

SMARC[®] conga-SMX8-Plus

SMARC[®] 2.1.1 module based on the NXP[®] i.MX 8M Plus applications processors

User's Guide

Revision 0.1 (Preliminary)

Revision History

Revision	Date (yyyy-mm-dd)	Author	Changes
0.1	2021-12-17	BEU	Preliminary release

Preface

This user's guide provides information about the components, features and connectors available on the conga-SMX8-Plus. It is one of five documents that should be referred to when designing a SMARC[®] application.

The other reference documents that should be used include the following:

conga-SMX8-Plus Pinout Description (https://git.congatec.com/arm-nxp/imx8-family/doc/cgtimx8_pinlist/tree/cgtsx8p_pinlist) SMARC® Design Guide 2.1.1 (https://sget.org) SMARC® Hardware Specification 2.1.1 (https://sget.org) NXP® i.MX 8M Plus Applications Processor Datasheet for Industrial Products (www.nxp.com)

Software Licenses

Notice Regarding Open Source Software

The congatec products contain Open Source software that has been released by programmers under specific licensing requirements such as the "General Public License" (GPL) Version 2 or 3, the "Lesser General Public License" (LGPL), the "ApacheLicense" or similar licenses.

You can find the specific details at https://www.congatec.com/en/licenses/.

Enter the following command "license" in the bootloader to get the complete product related license information.

To the extent that any accompanying material such as instruction manuals, handbooks etc. contain copyright notices, conditions of use or licensing requirements that contradict any applicable Open Source license, these conditions are inapplicable. The use and distribution of any Open Source software contained in the product is exclusively governed by the respective Open Source license.

The Open Source software is provided by its programmers without ANY WARRANTY, whether implied or expressed, of any fitness for a particular purpose, and the programmers DECLINE ALL LIABILITY for damages, direct or indirect, that result from the use of this software.

congatec's liability with regards to the open source Software is as set out in congatec's Software License Information.

Disclaimer

The information contained within this user's guide, including but not limited to any product specification, is subject to change without notice.

congatec GmbH provides no warranty with regard to this user's guide or any other information contained herein and hereby expressly disclaims any implied warranties of merchantability or fitness for any particular purpose with regard to any of the foregoing. congatec GmbH assumes no liability for any damages incurred directly or indirectly from any technical or typographical errors or omissions contained herein or for discrepancies between the product and the user's guide. In no event shall congatec GmbH be liable for any incidental, consequential, special, or exemplary damages, whether based on tort, contract or otherwise, arising out of or in connection with this user's guide or any other information contained herein or the use thereof.

Intended Audience

This user's guide is intended for technically qualified personnel. It is not intended for general audiences.

Lead-Free Designs (RoHS)

All congatec GmbH designs are created from lead-free components and are completely RoHS compliant.

Electrostatic Sensitive Device

All congatec GmbH products are electrostatic sensitive devices. They are enclosed in static shielding bags, and shipped enclosed in secondary packaging (protective packaging). The secondary packaging does not provide electrostatic protection.

Do not remove the device from the static shielding bag or handle it, except at an electrostatic-free workstation. Also, do not ship or store electronic devices near strong electrostatic, electromagnetic, magnetic, or radioactive fields unless the device is contained within its original packaging. Be aware that failure to comply with these guidelines will void the congatec GmbH Limited Warranty.

Symbols

The following symbols are used in this user's guide:

Warnings indicate conditions that, if not observed, can cause personal injury.

Cautions warn the user about how to prevent damage to hardware or loss of data.

Notes call attention to important information that should be observed.

Copyright Notice

Copyright © 2021, congatec GmbH. All rights reserved. All text, pictures and graphics are protected by copyrights. No copying is permitted without written permission from congatec GmbH. congatec GmbH has made every attempt to ensure that the information in this document is accurate yet the information contained within is supplied "as-is".

Trademarks

Product names, logos, brands, and other trademarks featured or referred to within this user's guide, or the congatec website, are the property of their respective trademark holders. These trademark holders are not affiliated with congatec GmbH, our products, or our website.

Warranty

congatec GmbH makes no representation, warranty or guaranty, express or implied regarding the products except its standard form of limited warranty ("Limited Warranty") per the terms and conditions of the congatec entity, which the product is delivered from. These terms and conditions can be downloaded from www.congatec.com. congatec GmbH may in its sole discretion modify its Limited Warranty at any time and from time to time.

The products may include software. Use of the software is subject to the terms and conditions set out in the respective owner's license agreements, which are available at www.congatec.com and/or upon request.

Beginning on the date of shipment to its direct customer and continuing for the published warranty period, congatec GmbH represents that the products are new and warrants that each product failing to function properly under normal use, due to a defect in materials or workmanship or due to non conformance to the agreed upon specifications, will be repaired or exchanged, at congatec's option and expense.

Customer will obtain a Return Material Authorization ("RMA") number from congatec GmbH prior to returning the non conforming product freight prepaid. congatec GmbH will pay for transporting the repaired or exchanged product to the customer.

Repaired, replaced or exchanged product will be warranted for the repair warranty period in effect as of the date the repaired, exchanged or replaced product is shipped by congatec, or the remainder of the original warranty, whichever is longer. This Limited Warranty extends to congatec's direct customer only and is not assignable or transferable.

Except as set forth in writing in the Limited Warranty, congatec makes no performance representations, warranties, or guarantees, either express or implied, oral or written, with respect to the products, including without limitation any implied warranty (a) of merchantability, (b) of fitness for a particular purpose, or (c) arising from course of performance, course of dealing, or usage of trade.

congatec GmbH shall in no event be liable to the end user for collateral or consequential damages of any kind. congatec shall not otherwise be liable for loss, damage or expense directly or indirectly arising from the use of the product or from any other cause. The sole and exclusive remedy against congatec, whether a claim sound in contract, warranty, tort or any other legal theory, shall be repair or replacement of the product only.

Certification

congatec GmbH is certified to DIN EN ISO 9001 standard.

Technical Support

congatec GmbH technicians and engineers are committed to providing the best possible technical support for our customers so that our products can be easily used and implemented. We request that you first visit our website at www.congatec.com for the latest documentation, utilities and drivers, which have been made available to assist you. If you still require assistance after visiting our website then contact our technical support department by email at support@congatec.com.

Contents

1	Introduction10
1.1 1.2 1.2.1 1.2.2	SMARC® Concept10conga-SMX8-Plus10Options Information11Accessories11
2	Specifications12
2.1 2.2 2.3 2.4 2.4.1 2.4.2 2.4.3 2.5 2.6 2.7	Feature List12Supported Operating Systems13Mechanical Dimensions13Standard Power.14Supply Voltage14Electrical Characteristics14Rise Time14Power Consumption15Supply Voltage Battery Power16Environmental Specifications16
3	Block Diagram17
4	Cooling Solutions18
4.1 4.2	CSP Dimensions
5	Connector Rows
5.1 5.1.1 5.2 5.2 5.3 5.4 5.5 5.6 5.7	Display Interfaces21LVDS / MIPI® DSI21HDMI®22Camera Inteface (MIPI CSI-2®)22SDIO Card (4 bit) Interface22SPI23Audio (I2S)23I2C Interfaces23Serial Ports24
5.8	CAN Bus

5.9 5.10 5.11 5.12 5.13 5.14	USB Interfaces24PCI Express®25Ethernet25GPIO26Boot Select27Power Control28
6	Onboard Interfaces and Devices
6.1 6.2 6.3 6.4 6.5 6.6 6.6.1 6.6.2	DRAM
7	Signal Descriptions and Pinout Tables
8	Software Documentation

List of Tables

Table 1	Commercial Variant	11
Table 2	Industrial Variants	11
Table 3	Accessories	11
Table 4	Measurement Description	15
Table 5	Power Consumption Values	15
Table 6	CMOS Battery Power Consumption	16
Table 7	Cooling Solution Variants	18
Table 8	Display Combinations	21
Table 9	USB Interfaces - Default and Options Description	24
Table 10	GPIO[0:13] Pinout Description	26
Table 11	A53 and Optional M7 Connector (X2) Pinout Description	31
Table 12	Optional JTAG Debug Connector (X3) Pinout Description	32

Terminology

Term	Description
°C	Degrees Celsius
μA	Microamp
μs	Microsecond
A	Ampere
AN	Application Note
ARM	Advanced RISC Machine
AVB	Audio Video Bridging
BT	Bluetooth
CAAM	Cryptographic Acceleration and Assurance Module
CMOS	Complementary Metal Oxide Semiconductor
СОМ	Computer-on-Module
CPU	Central Processing Unit
CSI	Camera Serial Interface
CSP	Cooling Solution Passive
DDR	Double Data Rate
DDRC Double Data Rate Controller	
DP	DisplayPort
DP++	DisplayPort Dual-Mode
DRAM	Dynamic Random Access Memory
DSI	Digital Serial Interface
D-SUB	D-Subminiature
eMMC	embedded Multi-Media Controller
FlexCAN	Flexible Controller Area Network
GB	Gigabyte
GbE	Gigabit Ethernet
GHz	Gigahertz
GND	Ground
GPIO	General-Purpose Input/Output
GPU	Graphics Processing Unit
GTps	Gigatransfers per second
HW	Hardware
НАВ	High Assurance Boot
HSP	Heat Spreader
Hz	Hertz
I/O	Input/Output
I ² C (I2C)	Inter-Integrated Circuit

I²S (I2S)	Inter-Integrated Circuit Sound		
IEEE	Institute of Electrical and Electronics Engineers		
JEIDA	Japan Electronic Industries		
02.271	Development Association		
JTAG	Joint Test Action Group		
KS	Key State		
LPDDR	Low-Power Double Data Rate		
LVDS	Low-Voltage Differential Signaling		
Mbps	Megabits per second		
MBps	Megabytes per second		
MHz	Megahertz		
mm	Millimeter		
MMU	Memory Management Unit		
mVpp	Millivolts Peak to Peak		
MXM	Mobile PCI Express Module		
NC	Not Connected		
Nm	Newton metre		
NXP	NeXt exPerience		
OS	Operating System		
OTG	On-The-Go		
PCB	Printed Circuit Board		
PCI Express	Peripheral Component Interconnect		
	Express		
PHY	Physical Layer		
PMIC	Power Management Integrated Circuit		
PN	Part Number		
QSPI	Quad Serial Peripheral Interface		
RGMII	Reduced Gigabit-Media Independent Interface		
RS-232	Recommended Standard 232		
RTC	Real-Time Clock		
SAI	Synchronous Audio Interface		
SD	Secure Digital		
SDIO	Secure Digital Input Output		
SDR	Single Data Rate		
SDRAM	Synchronous Dynamic Random Access Memory		

SDXC	Secure Digital eXtended Capacity		
SGET	Standardization Group for Embedded		
	Technologies e.V		
SMARC	Smart Mobility ARChitecture		
SoC	System on Chip		
SPI	Serial Peripheral Interface		
TBD	To Be Defined		
UART	Universal Asynchronous Receiver-		
	Transmitter		
U-Boot	Universal Boot Loader		
UHS	Ultra High Speed		
USB	Universal Serial Bus		
uSDHC ultra Secured Digital Host Contro			
V	Volt		
Vdc	Volts direct current		
VESA	Video Electronics Standards		
	Association		
W	Watt		
Wi-Fi	Wireless Fidelity		

1 Introduction

1.1 SMARC[®] Concept

The Standardization Group for Embedded Technologies e.V (SGET) defined the SMARC[®] standard for small form factor computer modules that target applications with low power, low cost and high performance. The SMARC[®] connector and interfaces are optimized for high-speed communication, and are suitable for ARM SoCs and low power x86 SoCs.

The SMARC[®] standard bridges the gap between the COM Express[®] standard and the Qseven[®] standard by offering most of the interfaces defined in the COM Express[®] specification at a lower power. With a footprint of 82 mm x 50 mm or 82 mm x 80 mm, the SMARC[®] standard promotes the design of highly integrated, energy efficient systems.

Due to its small size and lower power demands, PC appliance designers can design low cost devices as well as explore a huge variety of product development options—from compact space-saving designs to fully functional systems. This solution allows scalability, product diversification and faster time to market.

1.2 conga-SMX8-Plus

The conga-SMX8-Plus is a Computer On Module (COM) based on the SMARC[®] Hardware Specification 2.1.1. The conga-SMX8-Plus features an NXP[®] i.MX 8M Plus applications processor with four Arm[®] Cortex[®]-A53 cores and an integrated 2.3 TOPS Neural Processing Unit (NPU) for machine learning applications. The System on Chip (SoC) is manufactured using the 14nm LPC FinFET technology for high computing performance at low power. The conga-SMX8-Plus only requires 2 - 6 W @ 5V for typical applications.

By offering most of the functional requirement for any SMARC[®] application, the conga-SMX8-Plus provides manufacturers and developers with a platform to jump-start the development of systems and applications based on SMARC[®] Hardware Specification. Its features and capabilities make it an ideal platform for designing compact, energy-efficient, performance-oriented embedded systems.

1.2.1 Options Information

The conga-SMX8-Plus is available in the following variants:

Table 1 Commercial Variant

PN	051300
NXP [®] Processor	i.MX 8M Plus Quad
Cortex [®] -A53	4x 1.8 GHz
SDRAM	4 GB LPDDR4 @ 2000 MHz (32 bit) with In-line ECC
	(32 bit) with In-line ECC
eMMC	16 GB

Table 2 Industrial Variants

PN	051320	051321	
NXP [®] Processor	i.MX 8M Plus Quad	i.MX 8M Plus Quad	
Cortex [®] -A53	4x 1.6 GHz	4x 1.6 GHz	
SDRAM	4 GB LPDDR4 @ 2000 MHz	2 GB LPDDR4 @ 2000 MHz	
	(32 bit) with In-line ECC	(32 bit) with In-line ECC	
eMMC	16 GB	16 GB	

1.2.2 Accessories

Table 3 Accessories

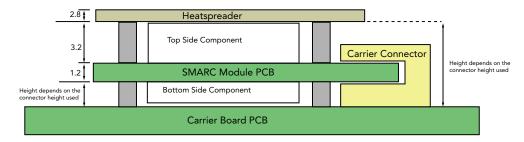
PN	Product Name	Comments
48000023	RS-232 adapter cable for conga-ARM module	Adapter cable for ARM console. MOLEX PicoBlade 6 circuit to two D-SUB 9 connector.
020750	conga-SMC1/SMARC-ARM	Compact sized 3.5" Carrier Board for ARM based SMARC 2.1 modules.
007010	conga-SEVAL	Evaluation Carrier Board for SMARC 2.1 modules.
44500040	daA4200-30mci	Camera module daA4200-30mci, Basler dart MIPI based 13MPx, 4 CSI2-Lanes, S-Mount
10000399	FFC BCON, 200mm (Basler MIPI cameras)	FFC cable to connect conga-SMC1 with MIPI camera
10000428	Evetar Lens M13B0618W F1.8 f6mm 1/3", IR-cut filter	Evetar S-mount lens with a fixed focal length of 6 mm and a fixed F-stop of F1.8. With IR-cut filter.
		(dedicated for Basler dart camera PN 44500040)

2 Specifications

2.1 Feature List

Form Factor	SMARC [®] Hardware Specification 2.1.1				
SoC	NXP® i.MX 8M Plus Quad: 4x Arm® Cortex®-A53 cores @ 1.8 GHz (commercial) or 1.6 GHz (industrial) 1x Arm® Cortex®-M7 @ 800MHz NPU 2.3 TOPS GPU GC7000UL				
DRAM	Up to 6 GByte onboard LPDDR4 memory 4000 MT/s inline ECC				
Ethernet	2x Gbit Ethernet with IEEE 1588 Support (1x with TSN support)				
I/O Interfaces	1x dual-role USB 2.0 1x SPI 2x USB 2.0 3x UART (2x with Handshake) 2x USB 3.0 2x CAN FD 1x SDIO 3.0 14x GPIO 1x PCle 3.0 1x optional soldered M.2 1216 Wi-Fi/BT 2x I ² C 1x SDIO 3.0				
Mass Storage	eMMC5.1 up to 128 GByte SPI Flash 64Mbit (Uboot)				
Sound	2x I ² S HiFi 4 DSP				
Graphics	Integrated in SoC GC7000UL3D graphics with 2 high performance vec4 shaders GC520L 2D graphic supports up to 2x1080p60 or 1x4kp30 display resolution Up to 3 independent displays VPU up to 1080p60 H.265/H.264 decoding and encoding OpenGL ES 3.1 Vulcan [®] extensions OpenCL 1.2 FP OpenVG 1.1				
Video Interfaces	1x dual channel 24-bit LVDS 2x MIPI-CSI 1x HDMI® 2.0a 2x integrated Image Signal Processor (ISP) for cameras with up to 12 MP resolution 1x MIPI DSI 4-lane shared with second LVDS channel 2x integrated Image Signal Processor (ISP) for cameras with up to 12 MP resolution	on			
Features	Watchdog Timer Cortex-A53 Console optional JTAG debug interface High Precision Real Time Clock				
AI & Machine Learning	Neural Processing Unit (NPU) with up to 2.3 TOP/s NXP eIQML SW tools and libraries				
Security	Cryptographic Acceleration and Assurance Module Resource Domain Controller ARM® TrustZone® High Assurance Boot support SHE Encryption Engine AES-128/192/256, DES/3DES, RC4, RSA4096, TRNG SHA-1/224/256 RSA-1024, 2048, 3072, 4096 and secure key store side channel attack resistance				
Boot Loader	U-Boot				
Operating Systems	Linux, Yocto Project Android				
Power Consumption	Low power Cortex-A53 / Cortex-M7 typ. application 2-6W @ 5V				
Temperature Range	Operating Temperature Range: 0 to +60°C commercial grade -40 to +85°C industrial grade Storage Temperature Range: -40 to +85°C				
Humidity	Operating: 10 -90% r. H. non cond. Storage: 5 -95% r. H. non cond.				
Size	82 x 50 mm (3,23" x 1,97")				

2.2 Supported Operating Systems

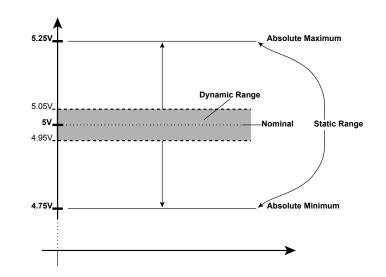

The conga-SMX8-Plus supports the following operating systems:

- Linux[®] (Yocto Project[®])
- Android[™]

2.3 Mechanical Dimensions

• 82.0 mm x 50.0 mm

The height of the module, heatspreader and stack is shown below:



All dimensions are in millimeters

2.4 Standard Power

2.4.1 Supply Voltage

• 4.75 V – 5.25 V

2.4.2 Electrical Characteristics

Characteristics			Min.	Тур.	Max.	Units	Comment
5V	Voltage	± 5%	4.75	5.00	5.25	Vdc	
	Ripple		-	-	± 50	mV _{PP}	0-20 MHz

2.4.3 Rise Time

The input voltages shall rise from 10 percent of nominal to 90 percent of nominal at a minimum slope of 250 V/s. The smooth turn-on requires that, during the 10 percent to 90 percent portion of the rise time, the slope of the turn-on waveform must be positive.

2.5 Power Consumption

The power consumption values were measured with the following setup:

- Input voltage +5 V
- conga-SMX8-Plus
- conga-SEVAL carrier board
- conga-SMX8-Plus cooling solution

The power consumption values were recorded during the system states described in the table below.

Table 4 Measurement Description

System State	Description	Comment
Suspend	Dormant mode / Deep sleep mode	For more information about these states, refer to the Application Note "i.MX 8M Plus Power
Idle	System idle mode	Consumption Measurement" available at the NXP® website www.nxp.com.
100% Workload	100% CPU workload	The CPU was stressed to its maximum frequency.
Peak Power	100% CPU workload at approximately	Consider this value when designing the system's power supply to ensure that sufficient power is
Consumption	100°C peak power consumption	supplied during worst case scenarios.

• Note

The peripherals did not influence the measured values because they were powered externally.

The table below provides the power consumption values of each conga-SMX8-Plus variant during different operating modes:

Table 5Power Consumption Values

PN	Memory	HW	U-Boot	SoC	Current (A) @ 5 V			
	Size	Revision			Suspend	Idle	100% Workload	Peak Power Consumption
051300	4 GB	TBD	TBD	i.MX 8M Plus Quad (1.8 GHz)	TBD	TBD	TBD	TBD
051320	4 GB	TBD	TBD	i.MX 8M Plus Quad (1.6 GHz)	TBD	TBD	TBD	TBD
051321	2 GB	TBD	TBD	i.MX 8M Plus Quad (1.6 GHz)	TBD	TBD	TBD	TBD

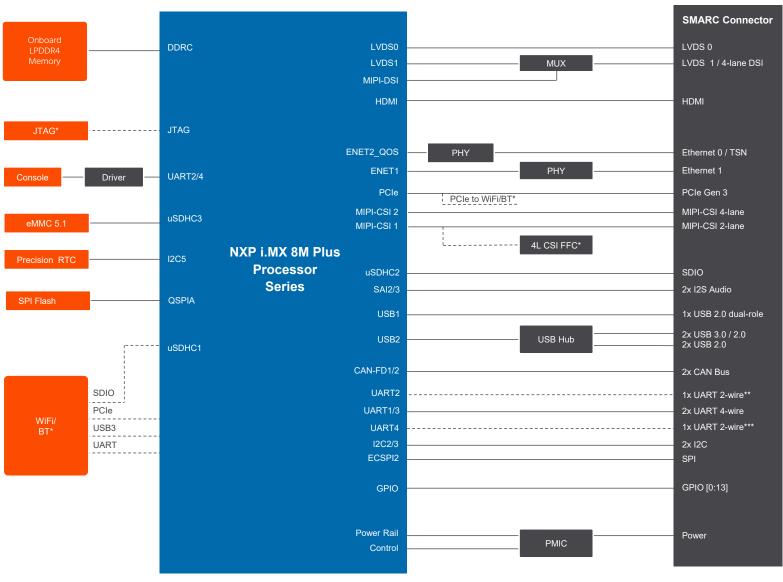
2.6 Supply Voltage Battery Power

Table 6	CMOS	Battery	Power	Consumption
---------	------	---------	-------	-------------

RTC @	Voltage	Current
-10°C	3V DC	TBD μA
20°C	3V DC	TBD μA
70°C	3V DC	TBD μΑ

Note

- ^{1.} Do not use the CMOS battery power consumption values listed above to calculate CMOS battery lifetime.
- ² Measure the CMOS battery power consumption in your customer specific application in worst case conditions (for example, during high temperature and high battery voltage).
- ^{3.} Consider the self-discharge of the battery when calculating the lifetime of the CMOS battery. For more information, refer to application note AN9_RTC_Battery_Lifetime.pdf on congatec website at www.congatec.com/support/application-notes


2.7 Environmental Specifications

Temperature (commercial variants)	Operation: 0° to 60°C	Storage: -40° to +85°C
Temperature (industrial variants)	Operation: -40° to 85°C	Storage: -40° to +85°C
Humidity	Operation: 10% to 90%	Storage: 5% to 95%

- ^{1.} The above operating temperatures must be strictly adhered to at all times. When using a congatec heatspreader, the maximum operating temperature refers to any measurable spot on the heatspreader's surface.
- ² Humidity specifications are for non-condensing conditions.

Block Diagram 3

* Assembly Option** Shared with Console

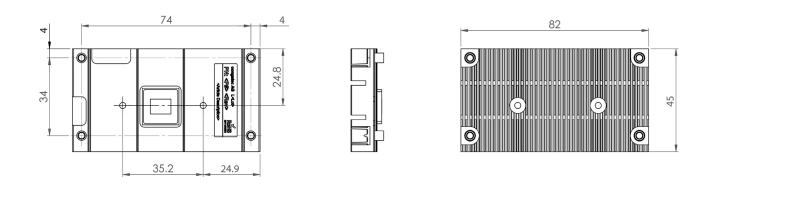
*** Shared with M7

4 Cooling Solutions

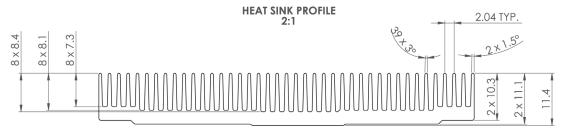
congatec GmbH offers the following cooling solutions for the conga-SMX8-Plus variants. The dimensions of the cooling solutions are shown in the sub-sections. All measurements are in millimeters.

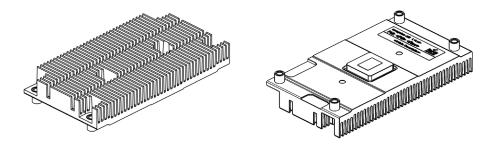
Table 7 Cooling Solution Variants

Cooling Solution	PN	Description
CSP	051350	Passive cooling solution for SMARC module conga-SMX8-Plus. All standoffs are with 2.7mm bore hole.
HSP	051351	Heat spreader solution for SMARC module conga-SMX8-Plus. All standoffs are with 2.7mm bore hole.
CSA-Adapter	050060	Active cooling solution adapter for SMARC modules used in combination with module heat spreader.

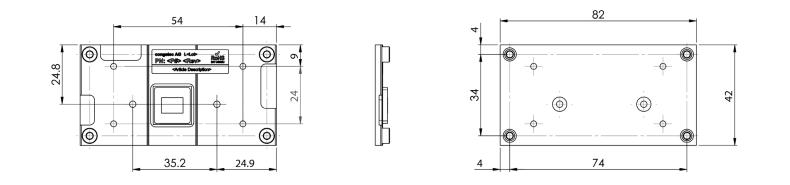

Note

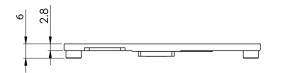
- 1. We recommend a maximum torque of 0.4 Nm for carrier board and module mounting screws.
- 2. The gap pad material used on congatec heatspreaders may contain silicon oil that can seep out over time depending on the environmental conditions it is subjected to. For more information about this subject, contact your local congatec sales representative and request the gap pad material manufacturer's specification.

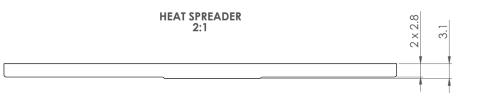


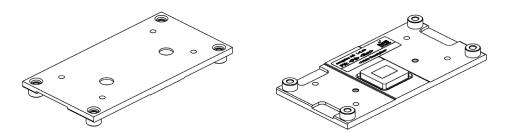

- 1. The congatec heatspreaders/cooling solutions are tested only within the commercial temperature range of 0° to 60°C. Therefore, if your application that features a congatec heatspreader/cooling solution operates outside this temperature range, ensure the correct operating temperature of the module is maintained at all times. This may require additional cooling components for your final application's thermal solution.
- 2. For adequate heat dissipation, use the mounting holes on the cooling solution to attach it to the module. Apply thread-locking fluid on the screws if the cooling solution is used in a high shock and/or vibration environment. To prevent the standoff from stripping or cross-threading, use non-threaded carrier board standoffs to mount threaded cooling solutions.
- 3. For applications that require vertically-mounted cooling solution, use only coolers that secure the thermal stacks with fixing post. Without the fixing post feature, the thermal stacks may move.
- 4. Do not exceed the recommended maximum torque. Doing so may damage the module or the carrier board, or both.

4.1 CSP Dimensions









4.2 HSP Dimensions

FIRST ANGLE

5 Connector Rows

The conga-SMX8-Plus has 314 edge fingers that mate with the MXM3 connector located on the carrier board. This connector is able to interface the signals of the conga-SMX8-Plus with the carrier board peripherals.

5.1 Display Interfaces

The conga-SMX8-Plus supports up to three independent displays as shown in the table below:

Table 8 Display Combinations

	Display 1		Display 2		Display 3	
	Interface	Max. Resolution	Interface	Max. Resolution	Interface	Max. Resolution
Default	Dual channel LVDS	1920x1080p60	-	-	HDMI®	3840x2160p30
Assembly Option	Single channel LVDS	1280x720p60	MIPI DSI®	2560x1080p60	HDMI®	3840x2160p30

➡Note

The MIPI® DSI interface only supports max. resolution 2560x1080p60 if it is the only display interface in use. Otherwise, the MIPI® DSI interface supports max. resolution 1920x1200p60 (MIPI® DSI + LVDS/HDMI®) or 1920x1080p60 (MIPI® DSI + LVDS + HDMI®).

5.1.1 LVDS / MIPI® DSI

The conga-SMX8-Plus offers LVDS[0:1] pins for one 18 / 24 bit dual channel LVDS interface by default.

Optionally, the LVDS1 pins can be used as DSI1 pins for one 4-lane MIPI DSI[®] interface instead as defined in the SMARC[®] Hardware Specification (assembly option).

Note

The conga-SMX8-Plus does not support eDP™.

5.1.2 HDMI®

The conga-SMX8-Plus offers HDMI pins for one HDMI® 2.0a display interface with support for multi-channel audio output.

Note

The conga-SMX8-Plus does not support DisplayPort++ $^{\text{TM}}$ (DP++ $^{\text{TM}}$).

5.2 Camera Inteface (MIPI CSI-2[®])

The conga-SMX8-Plus offers CSI[0:1] pins for up to two MIPI CSI-2[®] camera interfaces by default:

- CSIO offers two lanes (up to 1.5 Gbps/lane)
- CSI1 offers four lanes (up to 1.5 Gbps/lane)

Optionally, the conga-SMX8-Plus can offer an onboard connector for Basler's proprietary BCON for MIPI interface with four lanes instead of CSI0 with two lanes (assembly option).

➡Note

For camera accessories, refer to section 1.2.2 "Accessories".

5.3 SDIO Card (4 bit) Interface

The conga-SMX8-Plus offers pins for one SD card / SDIO interface. This interface supports:

- OS boot (Optionally, also bootcontainer)
- SD/SDIO specification 3.0
- 200 MHz 1.8V signaling for up to 100 MBps
- Secure Digital eXtended Capacity (SDXC™) cards
- UHS-I (SDR104/50 and DDR50) ¹
- Default Mode and High Speed Mode

Note

^{1.} The conga-SEVAL evaluation carrier board only supports UHS-I with full-size SD cards. Adadpters (microSD to SD) are not supported.

5.4 SPI

The conga-SMX8-Plus offers SPI0 pins for one Serial Peripheral Interface (SPI) with two device chip selects via the SPI0_CS[0:1]# pins. The max. supported clock frequency for read operations is 25 MHz and 50 MHz for write operations. SPI0 is connected to ECSPI2 of the SoC.

Optionally, the conga-SMX8-Plus can offer SPI1 pins for an additional SPI interface instead of SER2 pins (assembly option). For more information, see section 5.7 "Serial Ports". With this assembly option, SPI1 is connected to ECSPI1 of the SoC.

Optionally, the conga-SMX8-Plus can offer SPI1 pins for an additional SPI instead of the onboard NOR SPI flash memory chip (assembly option). For more information, see section 6.3 "SPI NOR Flash". With this assembly option, SPI1 is connected to QSPIA of the SoC.

Note

The conga-SMX8-Plus does not support eSPI.

5.5 Audio (I2S)

The conga-SMX8-Plus offers I2S0 and I2S2 pins for two Inter-IC Sound (I2S) buses by default:

- I2S0 is connected to SoC SAI2
- I2S2 is connected to SoC SAI3

Optionally, the I2SO signals can be connected to the optional onboard Wi-Fi/BT module instead of the SMARC[®] connector (assembly option).

Note

The conga-SMX8-Plus does not support HDA.

5.6 I2C Interfaces

The conga-SMX8-Plus offers the Inter-Integrated Circuit (I²C) buses as defined in the SMARC[®] Hardware Specification. The buses support the recommended multi-master capability and data rates of 100 kHz and 384 kHz.

- The I2C_PM bus (SoC I2C2) is shared with SMARC® LVDS/DSI DDC and CSI0/2 interfaces.
- The I2C_GP bus (SoC I2C3) is shared with the SMARC[®] CSI1 interface.

All devices must have a unique I²C address.

5.7 Serial Ports

The conga-SMX8-Plus offers SER[0:2] pins for three asynchronous serial ports by default. Each port supports programmable baud rates of up to 4 Mbps. SER0 and SER2 support handshaking. Optionally, the conga-SMX8-Plus can offer:

- Arm[®] Cortex[®]-M7 debug interface via onboard connector X2 instead of SER1 (assembly option)
- SPI1 pins for an additional SPI interface instead of SER2 pins (assembly option)
- Wi-Fi/BT module instead of the SMARC® SER2 pins (assembly option)

5.8 CAN Bus

The conga-SMX8-Plus offers CAN[0:1] pins for two Controller Area Network (CAN) buses via two FlexCAN controllers integrated in the SoC. Each bus supports the CAN FD and CAN 2.0 B protocols.

5.9 USB Interfaces

The conga-SMX8-Plus offers USB[0:4] pins for five USB ports by default. The USB[1:4] pins are provided via a TI TUSB8041 USB hub. USB0 is directly routed to the SoC. ¹

Optionally, the conga-SMX8-Plus can be offered without the USB hub (assembly option). The USB signals from the SoC can be directly routed to the SMARC[®] USB3 pins.

Table 9	USB Interfaces -	Default and	Options Description
---------	------------------	-------------	----------------------------

SMARC	Default	Assembly Option (Without USB Hub)
USB0 ¹	USB 2.0 Dual-Role	USB 2.0 Dual-Role
USB1	USB 2.0	N/A
USB2	USB 3.0 (5 Gbps)	N/A
USB3	USB 3.0 (5 Gbps)	USB 3.0 (5 Gbps)
USB4	USB 2.0	N/A

Note

^{1.} USB0 can be used for the Serial Downloader mode. Fore more information, see FORCE_RECOV# description in section 5.13 "Boot Select".

5.10 PCI Express[®]

The conga-SMX8-Plus offers PCIE_A pins for one PCIe® x1 Gen 3 bus with a bitrate of up to 8 GTps by default.

The conga-SMX8-Plus offers an onboard precision oscillator (DSC557-03) that generates the reference clock for PCIE_A (PCIE_A_REFCK±) by default. Alternatively, the SoC clock generator can be used instead.

Optionally, the SoC PCIe interface can be connected to the optional onboard WiFi/BT module instead of SMARC® PCIE_A (assembly option).

5.11 Ethernet

The conga-SMX8-Plus offers GBE[0:1] pins for two ethernet interfaces via two onboard TI DP83867IS Physical Layers (PHYs). Both interfaces support:

- 10/100/1000 Mbps
- Energy Efficient Ethernet (EEE)
- Ethernet AVB
- IEEE 1588v2 Precision Timing Protocol (PTP)

In addition, GBE0 also supports Time Sensitive Networking (TSN).

5.12 **GPIO**

The conga-SMX8-Plus offers GPIO[0:13] pins for 14 GPIOs. All pins are capable of bi-directional operation and are pulled up to 1.8V via SoC internal 22k pull-up resistors. Several GPIOs can be used for alternative functions as defined in the SMARC[®] Hardware Specification.

Table 10 GPIO[0:13] Pinout Description

Signal Name	Pin	Description	PU / PD	Alternative Use
GPIO0	P108	GPIO Pin 0 Preferred Output	socPU-22k	CAM0_PWR#
GPIO1	P109	GPIO Pin 1 Preferred Output	socPU-22k	CAM1_PWR#
GPIO2	P110	GPIO Pin 2 Preferred Output	socPU-22k	CAM0_RST#
GPIO3	P111	GPIO Pin 3 Preferred Output	socPU-22k	CAM1_RST#
GPIO4	P112	GPIO Pin 4 Preferred Output	socPU-22k	HDA_RST# is not supported
GPIO5	P113	GPIO Pin 5 Preferred Output	socPU-22k	PWM_OUT
GPIO6	P114	GPIO Pin 6 Preferred Input	socPU-22k	TACHIN is not supported
GPIO7	P115	GPIO Pin 7 Preferred Input	socPU-22k	
GPIO8	P116	GPIO Pin 8 Preferred Input	socPU-22k	
GPIO9	P117	GPIO Pin 9 Preferred Input	socPU-22k	
GPIO10	P118	GPIO Pin 10 Preferred Input	socPU-22k	
GPIO11	P119	GPIO Pin 11 Preferred Input	socPU-22k	
GPIO12	S142	GPIO Pin 12 Preferred Input	socPU-22k	
GPIO13	S123	GPIO Pin 13 Preferred Input	socPU-22k	

The conga-SMX8-Plus does not support HDA_RST# and TACHIN.

5.13 Boot Select

	Selected		
0#	1#	2#	Boot Source
Float	Float	Float	SPI Flash eFuse (default) ²
Float	Ground	Ground	SPI Flash
Ground	Ground	Float	SD card
Float	Ground	Float	eMMC
Ground	Float	Float	Serial Download Mode ³

The bootcontainer source can be selected via BOOT_SEL[2:0]# as described in the table below: ¹

On the conga-SEVAL evaluation carrier board, the boot source can be selected via DIP switches M17 and M18 as described in the table below:

Μ	17	M18	Selected
#1	#2	#1	Boot Source
OFF	OFF	OFF	SPI Flash eFuse (default) ²
OFF	ON	ON	SPI Flash
ON	ON	OFF	SD card
OFF	ON	OFF	eMMC
ON	OFF	OFF	Serial Download Mode ³

The OS boot device is defined via the U-Boot environment variables. For more information, refer to the conga-SMX8-Plus online software documentation at https://wiki.congatec.com

Note

congated

- ^{1.} The available boot sources and their selection via BOOT_SEL[2:0]# pins correspond with the boot mode options and configuration pins defined by NXP[®]. Therefore, select the desired boot source according to this table instead of the SMARC[®] Hardware Specification.
- ^{2.} Bootcontainer in onboard SPI Flash. eFuses select FlexSPI.
- ^{3.} The Serial Download Mode can also be selected via the FORCE_RECOV# pin. For normal operation, ensure this pin is not low.

FORCE_RECOV#

Low on the FORCE_RECOV# pin enables the Serial Download Mode regardless of the selected boot source via the BOOT_SEL[2:0]# pins. For normal operation, ensure this pin is not low. The program image can be downloaded over the USB0 port (see section 5.9 "USB Interfaces"). On the conga-SEVAL evaluation carrier board, set the jumper X45 to position 2-3 to enable the Serial Download Mode. For normal operation, ensure the jumper X45 is set to the default position 1-2.

5.14 Power Control

The power-up sequence of the conga-SMX8-Plus is described below:

- 1. The carrier board provides the input voltage (VDD_IN) to the module.
- 2. If VIN_PWR_BAD# is not driven low, the module enables its power circuits.
- 3. After the first VIN power on, the module starts the power-up sequence.
- 4. The module enables the carrier board power by asserting CARRIER_PWR_ON (SUS_S5#) and CARRIER_STBY# (SUS_S3#).
- 5. The module releases RESET_OUT# and starts the boot process.
- 6. RESET_IN# can be used for postpone boot process.

VIN_PWR_BAD#

VIN_PWR_BAD# (pin S150) is an active-low input signal. It indicates that the input voltage to the module is either not ready or out of specified range. Carrier board hardware should drive this signal low until the input power is up and stable. Releasing VIN_PWR_BAD# too early can cause numerous boot up problems. The module has a 10k pull up resistor to VDD_IN.

CARRIER_PWR_ON

CARRIER_PWR_ON (pin S154) is an active-high output signal. The module asserts this signal to enable power supplies for devices connected to the carrier board.

CARRIER_STBY#

The CARRIER_STBY# signal (pin S153) is an active-low output that can be used to indicate that the module is going into suspend state, where the A53 core power is turned off.

RESET_IN#

The RESET_IN# signal (pin P127) is an active-low input signal from the carrier board. The signal may be used to force the module to reset.

RESET_OUT#

The RESET_OUT# signal (pin P126) is an active-low output signal from the module. The module asserts this signal during the power-up sequencing to allow the carrier board power circuits to come up. The module deasserts this signal to begin the boot-up process.

POWER_BTN#

The POWER_BTN# (pin P128) is an active-low power button input from the carrier board. This power button signal is used to wake the system. Driving this signal low for at least 5 seconds powers off the system immediately.

Power Supply Implementation Guidelines

The operational power source for the conga-SMX8-Plus is 5 V. The remaining necessary voltages are internally generated on the module with onboard voltage regulators.

A carrier board designer should be aware of the important information below when designing a power supply for a conga-SMX8-Plus application:

• We have noticed that on some occasions, problems occur when using a 5 V power supply that produces non monotonic voltage when powered up. The problem is that some internal circuits on the module (e.g. clock-generator chips) generate their own reset signals when the supply voltage exceeds a certain voltage threshold. A voltage dip after passing this threshold may lead to these circuits becoming confused, thereby resulting in a malfunction. This problem though rare, has been observed in some mobile power supply applications. The best way to ensure that this problem is not encountered is to observe the power supply rise waveform through an oscilloscope. This will help to determine if the rise is indeed monotonic and does not have any dips. You should do this during the power supply qualification phase to ensure that the problem does not occur in the application. For more information, see the "Power Supply Design Guide for Desktop Platform Form Factors" document at www.intel.com.

Inrush and Maximum Current Peaks on VDD_IN

The maximum peak-current on the conga-SMX8-Plus VDD_IN (5 V) power rail can be as high as TBD A for a maximum of TBD µs. You should therefore ensure the power supply and decoupling capacitors provide enough power to drive the module.

Note

For more information about power control event signals, refer to the SMARC® Hardware Specification.

6 Onboard Interfaces and Devices

6.1 DRAM

The conga-SMX8-Plus offers up to 6 GB 32 bit LPDDR4 onboard SDRAM @ 2000 MHz with support for In-band ECC. The memory size of each conga-SMX8-Plus variant is listed in section 1.2.1 "Options Information".

6.2 eMMC

The conga-SMX8-Plus offers an onboard eMMC 5.1 HS400 storage device with up to 128 GB (16 GB assembled by default). Changes to the onboard eMMC may occur during the lifespan of the module in order to keep up with the rapidly changing eMMC technology. The performance of the newer eMMC may vary depending on the eMMC technology.

Note

For adequate operation of the eMMC, ensure that at least 15 % of the eMMC storage is reserved for vendor-specific functions.

6.3 SPI NOR Flash

The conga-SMX8-Plus offers an onboard SPI NOR flash memory chip with up to 256 Mbit (64 Mbit assembled by default). The SPI NOR flash memory chip is connected via QSPI by default. Optionally, the conga-SMX8-Plus can offer SPI1 pins for an additional SPI instead of the onboard NOR SPI flash memory chip (assembly option).

6.4 Wi-Fi and Bluetooth

Optionally, the conga-SMX8-Plus can offer Wi-Fi and Bluetooth connectivity via an onboard Azure Wave AW-CM276NF 802.11 a/b/g/n/ac 2x2+BT5.0 or Azure Wave AW-NM191NF 802.11 b/g/n 1x1 M.2 1216 module (assembly option).

We recommended to connect this module via an SDIO interface of the SoC. However, it is possible to connect the module via interfaces that are routed to the SMARC[®] connector by default:

- PCI Express (instead of PCIE_A)
- USB (instead of USB4)
- Serial Port (instead of SER2; can only be used for Bluetooth)

Optionally, SoC SAI2 signals can be connected to this module (assembly option). For more information, see section 5.5 "Audio (I2S)".

congatec

6.5 RTC

The conga-SMX8-Plus offers a discrete Real-Time Clock (RTC) via an onboard MicroCrystal RV-4162-C7 module (I²C Address: 0xD0). This RTC module is powered via the SMARC[®] VDD_RTC rail or a 3.3V rail.

Note

The conga-SMX8-Plus has onboard Schottky diodes that prevent reverse current.

6.6 Console and Debug Interfaces

6.6.1 A53 Console and M7 Debug

The conga-SMX8-Plus offers an Arm® Cortex®-A53 console interface via the onboard connector X2.

Optionally, the conga-SMX8-Plus can also offer an Arm[®] Cortex[®]-M7 debug interface on this connector shared with SMARC[®] SER1 pins.

The connector pinout is described in the table below:

Table 11 A53 and Optional M7 Connector (X2) Pinout Description

Pin	SoC Ball	Description
1	UART4_TXD	M7 Debug: Transmit signal via ISL3243E RS-232 Transmitter/Receiver connected to UART4_TXD of the SoC
2	+VIN	SMARC VDD_IN (+5 V)
3	GND	Ground
4	UART2_TXD	A53 Console: Transmit signal via ISL3243E RS-232 Transmitter/Receiver connected to UART2_TXD of the SoC
5	UART2_RXD	A53 Console: Receive signal via ISL3243E RS-232 Transmitter/Receiver connected to UART2_RXD of the SoC
6	UART4_RXD	M7 Debug: Receive signal via ISL3243E RS-232 Transmitter/Receiver connected to UART4_RXD of the SoC

Connector Type

X2: Molex PicoBlade 0532610671 (6 Circuits, 1.25mm Pitch, Right-Angle, Friction Lock) Mates with Molex PicoBlade Cable Assembly Series 15134 with 6 Circuits For a matching cable with two D-SUB 9 connectors, see PN 48000023 in Table 3.

6.6.2 JTAG Debug

Optionally, the conga-SMX8-Plus can offer an onboard JTAG debug interface (X3) (assembly option).

The connector pinout is described in the table below:

Pin	SoC Ball	Description
1	JTAG_VREF	+1.8V sourced by Module
2	JTAG_TMS	JTAG mode select
3	GND	Ground
4	JTAG_TCK	JTAG clock
5	GND	Ground
6	JTAG_TDO	JTAG data out
7	JTAG_MOD	Not connected
8	JTAG_TDI	JTAG data in
9	GND	Ground
10	JTAG_SRST#	System Reset, active low

Connector Type

X3: Molex PicoBlade 0532611071 (10 Circuits, 1.25mm Pitch, Right-Angle)

7 Signal Descriptions and Pinout Tables

X1A + X1B - SX8P SMARC edge connection								
SX8P / conga-SMX8-Plus Interfac	i.MX8MP Ball Nan	i.MX8MP Ball	SMARC Pin Name	SMARC	I/ 0	-	PU/PD	Remark
125	SAI2_MCLK	AJ15	AUDIO_MCK	\$38	0			
Management Pins	NAND_READY_B	T28	BATLOW#	S156	1		PU-10k	
Boot Select	BOOT_MODE0	G10	BOOT_SELO#	P123	1		PU-10k	via inverter, on engeneering samples only
Boot Select	BOOT_MODE1	F8	BOOT_SEL1#	P124	1		PU-10k	via inverter, on engeneering samples only
Boot Select	BOOT_MODE2	G8	BOOT_SEL2#	P125	1		PU-10k	via inverter, on engeneering samples only
CSI Master clock output	GPI01_I015	B5	CAM_MCK	S6	0			
CANO	SAI5_RXD2	AF16	CAN0_RX	P144	1		socPU-22k	
CANO	SAI5_RXD1	AD16	CAN0_TX	P143	0		socPU-22k	
CAN1	SAI5_MCLK	AF14	CAN1_RX	P146	1		socPU-22k	
CAN1	SAI5_RXD3	AE14	CAN1_TX	P145	0		socPU-22k	
Management Pins	PMIC_ON_REQ	F22	CARRIER_PWR_ON	S154	0		PD-2k2	via buffer
Management Pins	PMIC_STBY_REQ	J24	CARRIER_STBY#	S153	0		PD-2k2	via inverter from SOC PMIC_STBY_REQ; enabled by I2C5_PCAL6524_P2_2
Management Pins	SAI1_MCLK	AE12	CHARGER_PRSNT#	S152	1		PU-10k	
Management Pins	SAI5_RXC	AD14	CHARGING#	S151	1		PU-10k	

Click on the screenshot or link below to directly download the conga-SMX8-Plus pinout as an Excel file:

https://git.congatec.com/arm-nxp/imx8-family/doc/cgtimx8_pinlist/-/raw/cgtsx8p_pinlist/cgtsx8p_pin_connection.xlsx

Alternatively, you can find the conga-SMX8-Plus pinout by selecting it from the drop-down list at:

https://git.congatec.com/arm-nxp/imx8-family/doc/cgtimx8_pinlist/tree/master

The SMARC® signals are described in the SMARC® Hardware Specification publicly available at:

https://sget.org

The NXP® i.MX 8M Plus Applications Processor Datasheet for Commercial and Industrial Products is available at:

https://www.nxp.com

8 Software Documentation

Click on the screenshot or link below to open the conga-SMX8-Plus software documentation in your browser:

congatec congatec Wiki	Spaces 🛩	Search C	Log	in
i.MX 8 Documentation	1. Linux image build 1.1 Linux Host Machine preparation			
PagesBlog	 Ubuntu 18.04 or newer is recommended Linux Mint 19 was used as the reference system for this section The following tools have to be installed 			
PAGE TREE • Preface • Oseven Introduction	<pre>\$ sudo apt-get update \$ sudo apt-get install gawk wget git-core diffstat unzip texinfo gcc-mult </pre>	ilib build-essential chrpat	n so	
SMARC Introduction i.MX 8QM	Regarding the <i>repo</i> tool, it may be necessary to use newer version than the one provided via t the following steps are an example how to get access to such a version	he operating system package abov	'e;	
 i.MX 8X i.MX 8M Mini i.MX 8M Plus 	<pre>\$ mkdir -p ~/.bin \$ PATH="\${HOME}/.bin:\${PATH}" \$ curl https://storage.googleapis.com/git-repo-downloads/repo > ~/.bin/re \$ chmod a+rx ~/.bin/repo</pre>	2P0		
 conga-SMX8-Plus BSPs conga-SMX8-Plus conga-SMX8-Plus Yocto 3. 	 Linux Mint 20 Notes: 1. The package python needs to be installed using apt-get install in addition to the package 2. The package repo is no longer available, so the direct download as described in the pre- 			

https://wiki.congatec.com/pages/viewpage.action?pageId=9339238

Alternatively, you can find the conga-SMX8-Plus software documentation by selecting it from the navigation menu at:

https://wiki.congatec.com