

# **SLC**

# Industrial 2.5" Rugged Metal SATA III SSD

# **BON-III Series**

(Supports Fast & Secure Erase)



# Product Features

- Flash IC
  - TOSHIBA NAND Flash IC.
  - Single-Level Cell (SLC) management
- Compatibility
  - Compliant with SATA Revision 3.1
  - Compliance with Existing Sanitize (Purge)
     Standards by software vendor commands.
  - SATA 1.5Gb/s; SATA 3Gb/s & SATA 6Gb/s Interface compatible.
  - ATA-8 ACS2 command set
  - Compliance with Existing Sanitize (Purge)
     Standards by software vendor commands.

# Additional Capabilities

- Support Software command set for FE/SE function
- Supports Hardware Trigger for FE/SE function
- Supports Hardware jumper setting for Write Protect function
- Support Full-Drive Encryption.
- S.M.A.R.T. (Self-Monitoring, Analysis and Reporting Technology) feature set support.
- Native Command Queuing (NCQ) support.
- TRIM maintenance command support.
- Support Global wear-leveling algorithm
- Designed with a DRAM buffer which is support high transfer rate
- Power interrupts data protection technology by Tantalum Capacitors.
- Support Bad Block Management

# Mechanical

- Standard 2.5" SATA Flash Disk form-factor (7mm)
- SATA 7-pin (data) + 15-pin (power connector) SATA
   Interface
- Dimension: 100.0mm x 70.0mm x 9.2mm.
- Weight: 100.0 g / 3.52 oz.

- Power Operating Voltage 5V(+/-) 5%
  - Read Mode: 350.0 mA. (max.)
  - Write Mode: 420.0 mA. (max.)
  - Idle Mode: 120.0 mA. (max.)
- Performance (Maximum value) \*<sup>1</sup>
  - Sequential Read: 173.4 MB/sec. (max.)
  - Sequential Write: 165.8 MB/sec. (max.)
  - 4KB Random Read IOPS (QD32): 36K
  - 4KB Random Write IOPS (QD32): 40K
  - 4KB Random Read access time: 0.19ms
  - 4KB Random Write access time: 0.04ms

# Capacity

- 8GB, 16GB, 32GB, 64GB, 128GB and 256GB

# Reliability

- **TBW:** Up to 1,807.4 TBW at 256GB Capacity. (Client workload by JESD-219A)
- MTBF: > 3,000,000 hours
- ECC: Hardware BCH ECC capable of correcting errors up to 66-bit/1KB
- Temperature: (Operating)
   Standard Grade: 0°C ~ +70°C
   Industrial. Grade: -40°C ~ +85°C
- Vibration: 70 Hz to 2000 Hz, 15G, 3 axes.
- Shock: 0.5ms, 1500 G, 3 axes.

# Certifications and Declarations

- Certifications: CE & FCC
- Declarations: RoHS & REACH

### Remarks:

Sequential performance is based on CrystalDiskMark
 5.1.2 with file size 1000MB



# Order Information

### I. Part Number List

### APRO SLC Industrial 2.5" Rugged Metal SATA III SSD BON-III series

| Product Picture             | Grade | Standard grade (0°C ~ 70°C) | Industrial Grade ( -40°C ~ +85°C ) |
|-----------------------------|-------|-----------------------------|------------------------------------|
|                             | 8GB   | SR2SR008G-MSCTC-UFE(USE)P   | WR2SR008G-MSITI-UFE(USE)P          |
| APRO CO., Ltd.<br>FLASH SSD | 16GB  | SR2SR016G-MSCTC-UFE(USE)P   | WR2SR016G-MSITI-UFE(USE)P          |
| FLASH SSU                   | 32GB  | SR2SR032G-MSCTC-UFE(USE)P   | WR2SR032G-MSITI-UFE(USE)P          |
|                             | 64GB  | SR2SR064G-MSCTC-UFE(USE)P   | WR2SR064G-MSITI-UFE(USE)P          |
|                             | 128GB | SR2SR128G-MSCTC-UFE(USE)P   | WR2SR128G-MSITI-UFE(USE)P          |
|                             | 256GB | SR2SR256G-MSCTC-UFE(USE)P   | WR2SR256G-MSITI-UFE(USE)P          |

# II. Part Number Decoder:

# X1 X2 X3 X4 X5 X6 X7 X8 X9–X11 X12 X13 X14 X15–X17 X18 X19 X20 X21

# X1 : Grade

S: Standard Grade – operating temp. 0° C  $\sim$  70 ° C W: Industrial Grade- operating temp. -40° C  $\sim$  +85 ° C

### X2 : The material of case

R : Rugged Metal

# X3 X4 X5 : Product category

2SR: 2.5" SATA SSD w/DRAM cache

# X6 X7 X8 X9 : Capacity

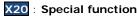
| 008G: | 8GB  | 064G: | 64GB  |
|-------|------|-------|-------|
| 016G: | 16GB | 128G: | 128GB |
| 032G: | 32GB | 256G: | 256GB |

# X11 : Controller

M : BON-III Series

X12 : Controller version

A, B, C.....


# X13 : Controller Grade

- $\boldsymbol{\mathsf{C}}$  : Commercial grade
- I : Industrial grade

# X14 : Flash IC

- T: Toshiba SLC-NAND Flash IC
- X15 : Flash IC grade / Type C : Commercial grade
- I : Industrial grade

| X17 X18 X19: Special function                                       |
|---------------------------------------------------------------------|
| UFE : Fast Erase function only                                      |
| <b>USE:</b> Secure Erase function (supported by special firmware) & |
| Fast Erase function                                                 |
|                                                                     |



P : Full-Drive Encryption

X21 : Reserved for specific requirement

C: Conformal-coating (optional)



# **Revision History**

| Revision | Description                                            | Date       |
|----------|--------------------------------------------------------|------------|
| 1.0      | Initial release                                        | 2016/09/14 |
| 1.1      | Add FE/SE Command Set                                  | 2018/07/31 |
| 1.2      | Updated Version                                        | 2018/11/28 |
| 2.1      | Add Support Full-Drive Encryption function decryption. | 2019/03/25 |
| 2.2      | Updated Document Format                                | 2019/06/06 |

# <u>Contents</u>

| Order Information       3         I. Part Number List       3         II. Part Number Decoder:       3         Revision History       4         Contents       5         1. Introduction       7         1.1. Scope       8         1.2. Flash Management Technology – Global Wear Leveling       8         1.3. Bad Block Management       8         1.4. DRAM Buffer       8         1.5. Power Interrupt Data Protection Technology       9         1.6. Full-Drive Encryption       9         1.7. Mean Time Between Failure (MTBF)       9         1.7.1. Definitions       9         1.7.2. Obtaining MTBF       10         1.7.3. Definitions       11         2. Product Specifications       13         2.1. System Environmental Specifications       13         2.2. System Performance       13         2.3. System Performance       14         2.6. Conformal coating       16         3.1. APRO SLC Industrial 2.5" Rugged Metal SATA III SSD BON-III series Interface       16         3.1. APRO SLC Industrial 2.5" Rugged Metal SATA III SSD BON-III series Interface       16         3.2. Pin Assignments       17         4.1. Fast / Secure Erase Jumper       18 <tr< th=""><th>Proc</th><th>duct Fe</th><th>patures</th><th> 2 -</th></tr<> | Proc | duct Fe | patures                                                                     | 2 -  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|-----------------------------------------------------------------------------|------|
| 11.       Part Number Decoder:       3 -         Revision History       4 -         Contents       5 -         1.       Introduction       7 -         1.1.       Scope       8 -         1.2.       Flash Management Technology - Global Wear Leveling       8 -         1.3.       Bad Block Management       8 -         1.4.       DRAM Burfer       8 -         1.5.       Power Interrupt Data Protection Technology       9 -         1.6.       Full-Drive Encryption       9 -         1.7.       Mean Time Between Failure (MTBF)       9 -         1.7.1.       Definitions       -11 -         2.7       Potauxt Specifications       -11 -         2.7       Potauxt Specifications       -13 -         2.1.       System Environmental Specifications       -13 -         2.1.       System Performance       -13 -         2.3.       System Reliability       -14 -         2.5.       Physical Specifications       -14 -         2.6.       Conformal coating       -16 -         3.1       Interface Description       -16 -         3.2.       Pin Assignments       -17 -         4.       Hardware Configuration of FE                                                                                                                        | Ord  | er Info | rmation                                                                     | 3 -  |
| Revision History       4         Contents       5         1.       Introduction       7         1.1.       Scope       8         1.2.       Flash Management Technology – Global Wear Leveling       8         1.3.       Bad Block Management       8         1.4.       DRAM Buffer       8         1.5.       Power Interrupt Data Protection Technology       9         1.6.       Full-Drive Encryption       9         1.7.       Mean Time Between Failure (MTBF)       9         1.7.1.       Definition       9         1.7.2.       Obtaining MTBF       10         1.7.3.       Definitions       11         2.       Product Specifications       11         2.       Product Specifications       13         2.1.       System Power Requirements       13         2.2.       System Performance       13         2.3.       System Reliability       14         2.5.       Physical Specifications       14         2.6.       Conformal coating       16         3.1       Interface Description       16         3.1.       APRO SLC Industrial 2.5" Rugged Metal SATA 111 SSD BON-111 series Interface       16 <td></td> <td>Ι.</td> <td>Part Number List</td> <td> 3 -</td>                                                                      |      | Ι.      | Part Number List                                                            | 3 -  |
| Contents       5         1.       Introduction       7         1.1.       Scope       8         1.2.       Flash Management Technology – Global Wear Leveling       8         1.3.       Bad Block Management       8         1.4.       DRAM Buffer       8         1.5.       Power Interrupt Data Protection Technology       9         1.6.       Full-Drive Encryption       -9         1.7.       Mean Time Between Failure (MTBF)       9         1.7.1.       Definition       9         1.7.2.       Obtaining MTBF       10         1.7.3.       Definitions       11         2.       Product Specifications       13         2.1.       System Environmental Specifications       13         2.2.       System Performance       13         2.3.       System Reliability       14         2.5.       Physical Specifications       11         2.6.       Conformal coating       16         3.1.       APRO SLC Industrial 2.5" Rugged Metal SATA 111 SSD BON-111 series interface       16         3.2.       Pin Assignments       17         4.1.       Fast Fase       18         4.1.1.       Fast Erase Jumper </td <td></td> <td>П.</td> <td>Part Number Decoder:</td> <td> 3 -</td>                                                            |      | П.      | Part Number Decoder:                                                        | 3 -  |
| 1.       Introduction       7         1.1.       Scope       8         1.2.       Flash Management Technology – Global Wear Leveling       8         1.3.       Bad Block Management       8         1.4.       DRAM Buffer       8         1.5.       Power Interrupt Data Protection Technology       9         1.6.       Full-Drive Encryption       9         1.7.       Mean Time Between Failure (MTBF)       9         1.7.1.       Definition       9         1.7.2.       Obtaining MTBF       10         1.7.3.       Definitions       11         2.       Product Specifications       13         2.1.       System Environmental Specifications       13         2.2.       System Performance       13         2.3.       System Reliability       14         2.5.       Physical Specifications       14         2.6.       Conformal coating       16         3.1.       APRO SLC Industrial 2.5" Rugged Metal SATA 111 SSD BON-111 series interface       16         3.2.       Pin Assignments       17         4.1.       Fast / Secure Erase Jumper       18         4.1.1       Fast Erase       18         4                                                                                                                                 | Rev  | ision H | listory                                                                     | 4 -  |
| 1.1.       Scope       -8 -         1.2.       Flash Management Technology – Global Wear Leveling       -8 -         1.3.       Bad Block Management       -8 -         1.4.       DRAM Buffer       -8 -         1.5.       Power Interrupt Data Protection Technology       -9 -         1.6.       Full-Drive Encryption       -9 -         1.7.       Mean Time Between Failure (MTBF)       -9 -         1.7.1       Definition       -9 -         1.7.2       Obtaining MTBF       -10 -         1.7.3       Definitions       -11 -         2.       Product Specifications       -13 -         2.1.       System Environmental Specifications       -13 -         2.2.       System Power Requirements       -13 -         2.3.       System Performance       -13 -         2.4.       System Reliability       -14 -         2.5.       Physical Specifications       -14 -         2.6.       Conformal coating       -16 -         3.1.       APRO SLC Industrial 2.5" Rugged Metal SATA III SSD BON-III series interface       -16 -         3.2.       Pin Assignments       -17 -         4.       Hardware Configuration of FE/SE Function       -18 -                                                                                              | Con  | tents.  |                                                                             | 5 -  |
| 1.2.       Flash Management Technology – Global Wear Leveling       8         1.3.       Bad Block Management       8         1.4.       DRAM Buffer       8         1.5.       Power Interrupt Data Protection Technology       9         1.6.       Full-Drive Encryption       9         1.7.       Mean Time Between Failure (MTBF)       -9         1.7.1.       Definition       -9         1.7.2.       Obtaining MTBF       10         1.7.3.       Definitions       11         2.       Product Specifications       13         2.1.       System Environmental Specifications       13         2.2.       System Performance       13         2.3.       System Requirements       13         2.4.       System Reliability       14         2.5.       Physical Specifications       14         2.6.       Conformal coating       16         3.1.       APRO SLC Industrial 2.5" Rugged Metal SATA III SSD BON-III series interface       16         3.2.       Pin Assignments       17         4.       Hardware Configuration of FE/SE Function       18         4.1.       Fast / Secure Erase       18         4.1.1.       Fast / Secure Erase Jump                                                                                              | 1.   |         | Introduction                                                                | 7 -  |
| 1.3.       Bad Block Management                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      | 1.1.    | Scope                                                                       | 8 -  |
| 1.4.       DRAM Buffer       -8 -         1.5.       Power Interrupt Data Protection Technology.       -9 -         1.6.       Full-Drive Encryption       -9 -         1.7.       Mean Time Between Failure (MTBF)       -9 -         1.7.       Definition       -9 -         1.7.1.       Definition       -9 -         1.7.2.       Obtaining MTBF       10 -         1.7.3.       Definitions       -11 -         2.       Product Specifications       -13 -         2.1.       System Environmental Specifications       -13 -         2.2.       System Performance       -13 -         2.3.       System Performance       -13 -         2.4.       System Reliability       -14 -         2.5.       Physical Specifications       -14 -         2.6.       Conformal coating       -16 -         3.1.       APRO SLC Industrial 2.5" Rugged Metal SATA III SSD BON-III series interface       -16 -         3.2.       Pin Assignments       -17 -         4.       Hardware Configuration of FE/SE Function       -18 -         4.1.       Fast / Secure Erase Jumper       -18 -         4.1.       Fast / Secure Erase Jumper       -18 -         4.1.                                                                                                |      | 1.2.    | Flash Management Technology – Global Wear Leveling                          | 8 -  |
| 1.5.       Power Interrupt Data Protection Technology.       - 9         1.6.       Full-Drive Encryption       - 9         1.7.       Mean Time Between Failure (MTBF)       - 9         1.7.1.       Definition       - 9         1.7.2.       Obtaining MTBF       - 10         1.7.3.       Definitions       - 11         2.       Product Specifications       - 13         2.1.       System Environmental Specifications       - 13         2.2.       System Power Requirements       - 13         2.3.       System Performance       - 13         2.4.       System Reliability       - 14         2.5.       Physical Specifications       - 14         2.6.       Conformal coating       - 16         3.1.       APRO SLC Industrial 2.5" Rugged Metal SATA III SSD BON-III series interface       - 16         3.2.       Pin Assignments       - 17         4.       Hardware Configuration of FE/SE Function       - 18         4.1.1.       Fast Erase       - 18         4.1.2.       Secure Erase Jumper       - 18         4.1.1.       Fast Erase       - 18         4.2.       Default Setting       - 19         4.3.       Write Protect Func                                                                                              |      | 1.3.    | Bad Block Management                                                        | 8 -  |
| 1.6.       Full-Drive Encryption       -9         1.7.       Mean Time Between Failure (MTBF)       -9         1.7.1.       Definition       -9         1.7.2.       Obtaining MTBF.       -10         1.7.3.       Definitions       -11         2.       Product Specifications       -13         2.1.       System Environmental Specifications       -13         2.2.       System Power Requirements       -13         2.3.       System Performance       -13         2.4.       System Reliability       -14         2.5.       Physical Specifications       -14         2.6.       Conformal coating       -16         3.       Interface Description       -16         3.1.       APRO SLC Industrial 2.5" Rugged Metal SATA III SSD BON-III series interface       -16         3.2.       Pin Assignments       -17         4.       Hardware Configuration of FE/SE Function       -18         4.1.       Fast / Secure Erase Jumper       -18         4.1.1       Fast Protect Function       -19         4.3.       Write Protect Function       -19         4.4.       Secure Erase Standards       -20         4.4.1.       Auto-Resume Features                                                                                                    |      | 1.4.    | DRAM Buffer                                                                 | 8 -  |
| 1.7.       Mean Time Between Failure (MTBF)       -9         1.7.1.       Definition       -9         1.7.2.       Obtaining MTBF       -10         1.7.3.       Definitions       -11         2.       Product Specifications       -13         2.1.       System Environmental Specifications       -13         2.2.       System Power Requirements       -13         2.3.       System Performance       -13         2.4.       System Reliability       -14         2.5.       Physical Specifications       -14         2.6.       Conformal coating       -16         3.       Interface Description       -16         3.1.       APRO SLC Industrial 2.5" Rugged Metal SATA III SSD BON-III series Interface       -16         3.2.       Pin Assignments       -17         4.       Hardware Configuration of FE/SE Function       -18         4.1.       Fast / Secure Erase Jumper       -18         4.1.       Fast Protect Function       -19         4.3.       Write Protect Function       -19         4.4.       Secure Erase Standards       -20         4.4.1.       Auto-Resume Features       -20         4.4.2.       Random Data Written During                                                                                              |      | 1.5.    | Power Interrupt Data Protection Technology                                  | 9 -  |
| 1.7.1.Definition-91.7.2.Obtaining MTBF-101.7.3.Definitions-112.Product Specifications-132.1.System Environmental Specifications-132.2.System Power Requirements-132.3.System Performance-132.4.System Reliability-142.5.Physical Specifications-142.6.Conformal coating-163.Interface Description-163.1.APRO SLC Industrial 2.5" Rugged Metal SATA III SSD BON-III series interface-163.2.Pin Assignments-174.Hardware Configuration of FE/SE Function-184.1.1.Fast Frase-184.1.2.Secure Erase Jumper-184.1.3.Write Protect Function-194.3.Write Protect Function-194.4.Secure Erase Standards-204.4.1.Auto-Resume Features-204.4.2.Random Data Written During the Sanitize Procedure-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | 1.6.    | Full-Drive Encryption                                                       | 9 -  |
| 1.7.2.       Obtaining MTBF.       10         1.7.3.       Definitions       11         2.       Product Specifications       13         2.1.       System Environmental Specifications       13         2.2.       System Power Requirements       13         2.3.       System Performance       13         2.4.       System Reliability       14         2.5.       Physical Specifications       14         2.6.       Conformal coating       16         3.       Interface Description       16         3.1.       APRO SLC Industrial 2.5" Rugged Metal SATA III SSD BON-III series interface       16         3.2.       Pin Assignments       17         4.       Hardware Configuration of FE/SE Function       18         4.1.       Fast Erase       18         4.1.1.       Fast Erase       18         4.1.2.       Secure Erase Jumper       18         4.2.       Default Setting       19         4.3.       Write Protect Function       19         4.4.       Secure Erase Standards       20         4.4.1.       Auto-Resume Features       20         4.4.2.       Random Data Written During the Sanitize Procedure       20                                                                                                                |      | 1.7.    | Mean Time Between Failure (MTBF)                                            | 9 -  |
| 1.7.3.       Definitions       11 -         2.       Product Specifications       13 -         2.1.       System Environmental Specifications       13 -         2.2.       System Power Requirements       13 -         2.3.       System Performance       13 -         2.4.       System Reliability       -14 -         2.5.       Physical Specifications       -14 -         2.6.       Conformal coating       -16 -         3.1.       APRO SLC Industrial 2.5" Rugged Metal SATA III SSD BON-III series interface       -16 -         3.1.       APRO SLC Industrial 2.5" Rugged Metal SATA III SSD BON-III series interface       -16 -         3.2.       Pin Assignments       -17 -         4.       Hardware Configuration of FE/SE Function       -18 -         4.1.       Fast / Secure Erase Jumper       -18 -         4.1.1.       Fast Erase       -18 -         4.1.2.       Secure Erase Jumper       -18 -         4.1.2.       Default Setting       -19 -         4.3.       Write Protect Function       -19 -         4.4.       Secure Erase Standards       -20 -         4.4.1.       Auto-Resume Features       -20 -         4.4.2.       Random Data Written During the Sanitize                                                   |      | 1.7.3   | 1. Definition                                                               | 9 -  |
| 2.       Product Specifications       - 13 -         2.1.       System Environmental Specifications       - 13 -         2.2.       System Power Requirements       - 13 -         2.3.       System Performance       - 13 -         2.4.       System Reliability       - 14 -         2.5.       Physical Specifications       - 14 -         2.6.       Conformal coating       - 16 -         3.       Interface Description       - 16 -         3.1.       APRO SLC Industrial 2.5" Rugged Metal SATA III SSD BON-III series interface       - 16 -         3.2.       Pin Assignments       - 17 -         4.       Hardware Configuration of FE/SE Function       - 18 -         4.1.       Fast / Secure Erase Jumper       - 18 -         4.1.1.       Fast Erase       - 18 -         4.2.       Default Setting       - 19 -         4.3.       Write Protect Function       - 19 -         4.4.       Secure Erase Standards       - 20 -         4.4.1.       Auto-Resume Features       - 20 -         4.4.2.       Random Data Written During the Sanitize Procedure       - 20 -                                                                                                                                                                  |      | 1.7.2   | 2. Obtaining MTBF                                                           | 10 - |
| 2.1.System Environmental Specifications132.2.System Power Requirements132.3.System Performance132.4.System Reliability142.5.Physical Specifications142.6.Conformal coating163.Interface Description163.1.APRO SLC Industrial 2.5" Rugged Metal SATA III SSD BON-III series interface163.2.Pin Assignments174.Hardware Configuration of FE/SE Function184.1.Fast / Secure Erase Jumper184.1.1.Fast Erase184.2.Default Setting194.3.Write Protect Function194.4.Secure Erase Standards204.4.1.Auto-Resume Features204.4.2.Random Data Written During the Sanitize Procedure20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      | 1.7.3   | 3. Definitions                                                              | 11 - |
| 2.2.       System Power Requirements       -13         2.3.       System Performance       -13         2.4.       System Reliability       -14         2.5.       Physical Specifications       -14         2.6.       Conformal coating       -16         3.       Interface Description       -16         3.1.       APRO SLC Industrial 2.5" Rugged Metal SATA III SSD BON-III series interface       -16         3.2.       Pin Assignments       -17         4.       Hardware Configuration of FE/SE Function       -18         4.1.       Fast / Secure Erase Jumper       -18         4.1.1.       Fast Erase       -18         4.1.2.       Secure Erase       -18         4.2.       Default Setting       -19         4.3.       Write Protect Function       -19         4.4.       Secure Erase Standards       -20         4.4.1.       Auto-Resume Features       -20         4.4.2.       Random Data Written During the Sanitize Procedure       -20                                                                                                                                                                                                                                                                                               | 2.   |         | Product Specifications                                                      | 13 - |
| 2.3.       System Performance       13 -         2.4.       System Reliability       -14 -         2.5.       Physical Specifications       -14 -         2.6.       Conformal coating       -16 -         3.       Interface Description       -16 -         3.1.       APRO SLC Industrial 2.5" Rugged Metal SATA III SSD BON-III series interface       -16 -         3.2.       Pin Assignments       -17 -         4.       Hardware Configuration of FE/SE Function       -18 -         4.1.       Fast / Secure Erase Jumper       -18 -         4.1.1.       Fast Erase       -18 -         4.1.2.       Secure Erase       -18 -         4.2.       Default Setting       -19 -         4.3.       Write Protect Function       -19 -         4.4.       Secure Erase Standards       -20 -         4.4.1.       Auto-Resume Features       -20 -         4.4.2.       Random Data Written During the Sanitize Procedure       -20 -                                                                                                                                                                                                                                                                                                                       |      | 2.1.    | System Environmental Specifications                                         | 13 - |
| 2.4.System Reliability14 -2.5.Physical Specifications14 -2.6.Conformal coating16 -3.Interface Description16 -3.1.APRO SLC Industrial 2.5" Rugged Metal SATA III SSD BON-III series interface16 -3.2.Pin Assignments17 -4.Hardware Configuration of FE/SE Function18 -4.1.Fast / Secure Erase Jumper18 -4.1.1.Fast Erase18 -4.1.2.Secure Erase18 -4.2.Default Setting19 -4.3.Write Protect Function19 -4.4.Secure Erase Standards20 -4.4.1.Auto-Resume Features20 -4.4.2.Random Data Written During the Sanitize Procedure20 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      | 2.2.    | System Power Requirements                                                   | 13 - |
| 2.5.Physical Specifications14 -2.6.Conformal coating-16 -3.Interface Description-16 -3.1.APRO SLC Industrial 2.5" Rugged Metal SATA III SSD BON-III series interface-16 -3.2.Pin Assignments-17 -4.Hardware Configuration of FE/SE Function-18 -4.1.Fast / Secure Erase Jumper-18 -4.1.1.Fast Erase-18 -4.1.2.Secure Erase-18 -4.2.Default Setting-19 -4.3.Write Protect Function-19 -4.4.Secure Erase Standards-20 -4.4.1.Auto-Resume Features-20 -4.4.2.Random Data Written During the Sanitize Procedure-20 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      | 2.3.    | System Performance                                                          | 13 - |
| 2.6.       Conformal coating.       - 16 -         3.       Interface Description       - 16 -         3.1.       APRO SLC Industrial 2.5" Rugged Metal SATA III SSD BON-III series interface       - 16 -         3.2.       Pin Assignments       - 17 -         4.       Hardware Configuration of FE/SE Function       - 18 -         4.1.       Fast / Secure Erase Jumper       - 18 -         4.1.1.       Fast Erase       - 18 -         4.1.2.       Secure Erase       - 18 -         4.2.       Default Setting       - 19 -         4.3.       Write Protect Function       - 19 -         4.4.       Secure Erase Standards       - 20 -         4.4.2.       Random Data Written During the Sanitize Procedure       - 20 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      | 2.4.    | System Reliability                                                          | 14 - |
| 3.       Interface Description       - 16 -         3.1.       APRO SLC Industrial 2.5" Rugged Metal SATA III SSD BON-III series interface       - 16 -         3.2.       Pin Assignments       - 17 -         4.       Hardware Configuration of FE/SE Function       - 18 -         4.1.       Fast / Secure Erase Jumper       - 18 -         4.1.1.       Fast Erase       - 18 -         4.1.2.       Secure Erase       - 18 -         4.2.       Default Setting       - 19 -         4.3.       Write Protect Function       - 19 -         4.4.       Secure Erase Standards       - 20 -         4.4.1.       Auto-Resume Features       - 20 -         4.4.2.       Random Data Written During the Sanitize Procedure       - 20 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      | 2.5.    | Physical Specifications                                                     | 14 - |
| 3.1.       APRO SLC Industrial 2.5" Rugged Metal SATA III SSD BON-III series interface       - 16 -         3.2.       Pin Assignments       - 17 -         4.       Hardware Configuration of FE/SE Function       - 18 -         4.1.       Fast / Secure Erase Jumper       - 18 -         4.1.1.       Fast Erase       - 18 -         4.1.2.       Secure Erase       - 18 -         4.2.       Default Setting       - 19 -         4.3.       Write Protect Function       - 19 -         4.4.       Secure Erase Standards       - 20 -         4.4.1.       Auto-Resume Features       - 20 -         4.4.2.       Random Data Written During the Sanitize Procedure       - 20 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      | 2.6.    | Conformal coating                                                           | 16 - |
| 3.2. Pin Assignments       - 17 -         4. Hardware Configuration of FE/SE Function       - 18 -         4.1. Fast / Secure Erase Jumper       - 18 -         4.1.1. Fast Erase       - 18 -         4.1.2. Secure Erase       - 18 -         4.2. Default Setting       - 19 -         4.3. Write Protect Function       - 19 -         4.4. Secure Erase Standards       - 20 -         4.4.1. Auto-Resume Features       - 20 -         4.4.2. Random Data Written During the Sanitize Procedure       - 20 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | З.   |         | Interface Description                                                       | 16 - |
| 4.       Hardware Configuration of FE/SE Function       - 18 -         4.1.       Fast / Secure Erase Jumper       - 18 -         4.1.1.       Fast Erase       - 18 -         4.1.2.       Secure Erase       - 18 -         4.2.       Default Setting       - 19 -         4.3.       Write Protect Function       - 19 -         4.4.       Secure Erase Standards       - 20 -         4.4.1.       Auto-Resume Features       - 20 -         4.4.2.       Random Data Written During the Sanitize Procedure       - 20 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      | 3.1.    | APRO SLC Industrial 2.5" Rugged Metal SATA III SSD BON-III series interface | 16 - |
| 4.1.Fast / Secure Erase Jumper- 18 -4.1.1.Fast Erase- 18 -4.1.2.Secure Erase- 18 -4.2.Default Setting- 19 -4.3.Write Protect Function- 19 -4.4.Secure Erase Standards- 20 -4.4.1.Auto-Resume Features- 20 -4.4.2.Random Data Written During the Sanitize Procedure- 20 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | 3.2.    | Pin Assignments                                                             | 17 - |
| 4.1.1.Fast Erase- 18 -4.1.2.Secure Erase- 18 -4.2.Default Setting- 19 -4.3.Write Protect Function- 19 -4.4.Secure Erase Standards- 20 -4.4.1.Auto-Resume Features- 20 -4.4.2.Random Data Written During the Sanitize Procedure- 20 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.   |         | Hardware Configuration of FE/SE Function                                    | 18 - |
| 4.1.2.Secure Erase- 18 -4.2.Default Setting- 19 -4.3.Write Protect Function- 19 -4.4.Secure Erase Standards- 20 -4.4.1.Auto-Resume Features- 20 -4.4.2.Random Data Written During the Sanitize Procedure- 20 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      | 4.1.    | Fast / Secure Erase Jumper                                                  | 18 - |
| 4.2.Default Setting- 19 -4.3.Write Protect Function- 19 -4.4.Secure Erase Standards- 20 -4.4.1.Auto-Resume Features- 20 -4.4.2.Random Data Written During the Sanitize Procedure- 20 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      | 4.1.1   | I. Fast Erase                                                               | 18 - |
| 4.3.Write Protect Function- 19 -4.4.Secure Erase Standards- 20 -4.4.1.Auto-Resume Features- 20 -4.4.2.Random Data Written During the Sanitize Procedure- 20 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      | 4.1.2   | 2. Secure Erase                                                             | 18 - |
| 4.4.Secure Erase Standards- 20 -4.4.1.Auto-Resume Features- 20 -4.4.2.Random Data Written During the Sanitize Procedure- 20 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      | 4.2.    | Default Setting                                                             | 19 - |
| 4.4.1.Auto-Resume Features- 20 -4.4.2.Random Data Written During the Sanitize Procedure- 20 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      | 4.3.    | Write Protect Function                                                      | 19 - |
| 4.4.2. Random Data Written During the Sanitize Procedure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | 4.4.    | Secure Erase Standards                                                      | 20 - |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      | 4.4.3   | 1. Auto-Resume Features                                                     | 20 - |
| 1.1.2 Protection Machaniam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      | 4.4.2   | 2. Random Data Written During the Sanitize Procedure                        | 20 - |
| - 20 20 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | 4.4.3   |                                                                             |      |

# Contents

|    | 4.4.4.         | Using the SSD After Sanitizing Procedure           | 21 - |
|----|----------------|----------------------------------------------------|------|
|    | 4.4.5.         | Required Time for Secure Erase Function            | 21 - |
| 5. | Softwar        | e Commands                                         | 21 - |
|    | 5.1. Fas       | st Erase                                           | 22 - |
|    | 5.1.1.         | Inputs for Enabling Fast Erase                     | 22 - |
|    | 5.1.2.         | Outputs for Enabling Fast Erase                    | 22 - |
|    | 5.2. See       | cure Erase (Sanitizing Procedures)                 | 23 - |
|    | 5.2.1. I       | NSA Manual 130-2                                   | 23 - |
|    | 5.2.1.1.       | Inputs for Enabling NSA Manual 130-2               | 23 - |
|    | 5.2.1.2.       | Outputs for Enabling NSA Manual 130-2              | 23 - |
|    | 5.2.2.         | USA-AF AFFSI 5020                                  | 24 - |
|    | 5.2.2.1.       | Inputs for Enabling USA-AF AFFSI 5020              | 24 - |
|    | 5.2.2.2.       | Outputs for Enabling USA-AF AFFSI 5020             | 24 - |
|    | 5.2.3. I       | DoD 5220.22-M                                      | 25 - |
|    | 5.2.3.1.       | Inputs for Enabling DoD 5220.22-M                  | 25 - |
|    | 5.2.3.2.       | Outputs for Enabling DoD 5220.22-M                 | 25 - |
|    | 5.2.4.         | IRIG 106                                           | 26 - |
|    | 5.2.4.1.       | Inputs for Enabling IRIG 106                       | 26 - |
|    | 5.2.4.2.       | Outputs for Enabling IRIG 106                      | 26 - |
|    | 5.2.5.         | USA Navy NAVSO P-5239-26                           | 27 - |
|    | 5.2.5.1.       | Inputs for Enabling USA Navy NAVSO P-5239-26       | 27 - |
|    | 5.2.5.2.       | Outputs for Enabling USA Navy NAVSO P-5239-26      | 27 - |
|    | 5.2.6.         | USA-Army 380-19                                    | 28 - |
|    | 5.2.6.1.       | Inputs for Enabling USA-Army 380-19                | 28 - |
|    | 5.2.6.2.       | Outputs for Enabling USA-Army 380-19               | 28 - |
|    | 5.2.7. I       | NISPOMSUP Chap 8, Sect. 8-501                      | 29 - |
|    | 5.2.7.1.       | Inputs for Enabling NISPOMSUP Chap 8, Sect. 8-501  | 29 - |
|    | 5.2.7.2.       | Outputs for Enabling NISPOMSUP Chap 8, Sect. 8-501 | 29 - |
| Ар | oendix A: Limi | ted Warranty                                       | 30 - |

APRO

# 1. Introduction

APRO SLC Industrial 2.5" Rugged Metal SATA III SSD BON-III series provides high capacity flash memory Solid State Drive (SSD) that electrically complies with Serial ATA 3.1 (SATA) standard. APRO SLC Industrial 2.5" Rugged Metal SATA III SSD BON-III series support SATA 1.5Gb/s; SATA 3Gb/s & SATA 6Gb/s data transfer rate with high performance, and designed with a DRAM which is support the data buffer for SSD. The available disk capacities are 8GB, 16GB, 32GB, 64GB, 128GB and 256GB.

The operating temperature grade is optional for Standard grade  $0^{\circ}$ C ~ 70°C and Industrial grade supports -40°C ~ +85°C. The data transfer performance by sequential read is up to 173.4 MB/sec, and sequential write is up to 165.8 MB/sec.

APRO SLC Industrial 2.5" Rugged Metal SATA III SSD BON-III series supports Fast Erase/Secure Erase which initiates by hardware design and software vendor commands. Fast Erase Procedure is one of the defaults sanitizing procedure in BON-III series. Fast Erase enables users to erase entire disk contents within seconds; 8GB, 16GB SSD needs about 17.5 seconds, and 256GB needs about 60 seconds to run the fast erase procedure for whole disk completely.

APRO SLC Industrial 2.5" Rugged Metal SATA III SSD BON-III series built-in a 4Gbits DRAM, provide a high level interface to the host computer. This interface allows a host computer to issue commands to the APRO SLC Industrial 2.5" Rugged Metal SATA III SSD BON-III series to read or write blocks of memory. Hardware BCH ECC capable of correcting errors up to 66-bit/1KB (ECC). APRO SLC Industrial 2.5" Rugged Metal SATA III SSD BON-III series intelligent controller manages interface protocols, data storage and retrieval as well as ECC, defect handling and diagnostics, power management and clock control.

Figure 1 shows a block diagram of the used high tech APRO SLC Industrial 2.5" Rugged Metal SATA III SSD BON-III series.

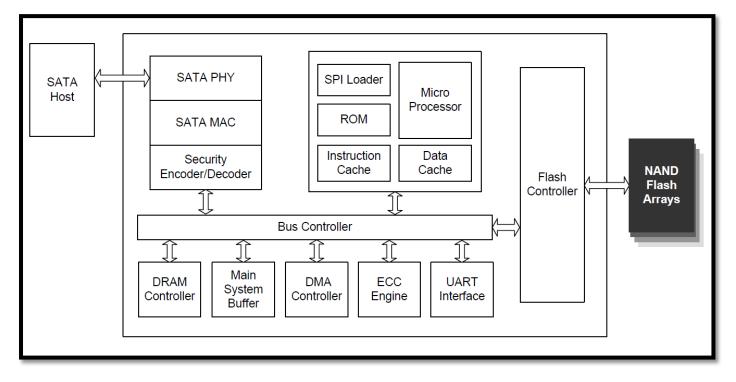



Figure 1: APRO SLC Industrial 2.5" Rugged Metal SATA III SSD BON-III series block diagram

# 1.1. Scope

This document describes features, specifications and installation guide of APRO SLC Industrial 2.5" Rugged Metal SATA III SSD BON-III series. In the appendix, there provides order information, warranty policy, RMA/DOA procedure for the most convenient reference.

# 1.2. Flash Management Technology – Global Wear Leveling

In order to gain the best management for flash memory, APRO SLC Industrial 2.5" Rugged Metal SATA III SSD BON-III series applies Global Wear-leveling technology to manage the Flash system. The life of flash memory is limited; the management is to increase the life of the flash product. The objective of global wear leveling is to prevent any frequently updated data from staying at the static area so that wear leveling could be evenly applied to all blocks. Static areas contain any data that does not change, and are ignored by dynamic wear leveling. Such static data may include operating system files, table look-ups, executable files, and etc. Global wear leveling frequently replaces blocks in this area with block in the hot area, and thus each block in all areas has the same probability to be used.

Wear-leveling algorithm evenly distributes data over an entire Flash cell array and searches for the least used physical blocks. The identified low cycled sectors are used to write the data to those locations. If blocks are empty, the write occurs normally. If blocks contain data, it moves that data to a more heavily used location before it moves the newly written data. Wear leveling maximizes effective endurance Flash array compared to no wear leveling products.

# 1.3. Bad Block Management

### Early Bad Block

The fault block generated during the manufacturing process of NAND Flash is called Early Bad Block.

### Later Bad Block

In the process of use, as the number of operations of writing and erasing increases, a fault block is gradually generated, which is called a Latter Bad Block.

**Bad block management** is a management mechanism for a bad block to be detected by the control IC and mark bad blocks in the NAND Flash and improve the reliability of data access. The bad block management mechanism of the control IC will establish a **Bad Block Table** when the NAND Flash is started for the first time, and will also record the errors found in the process of use in the bad block table, and data is ported to new valid blocks to avoid data loss.

In order to detect the initial bad blocks to handle run time bad blocks, APRO SLC Industrial 2.5" Rugged Metal SATA III SSD BON-III series provides the **Bad Block Management** scheme. It remaps a bad block to one of the reserved blocks so that the data contained in one bad block is not lost and new data writes on a bad block is avoided.

# 1.4. DRAM Buffer

SSDs designed with a DRAM buffer which is support high transfer rate as a data buffer for the SSD; SSD with DRAM buffer is able to deliver excellent random data transfer speed.

> 32GB to 256GB Supports 4GBits DRAM Cache

# **Product Specifications**

# APRO

# 1.5. Power Interrupt Data Protection Technology

In the event of an unstable power supply, SSD loses power before it can finish programming process from host to flash, this may cause data being written to the incorrect block and further leads to data corruption.

Power Interrupt Data Protection Technology is applied with several tantalum capacitors to provide power buffering after host power interruption. The Data Protection Technology provides enough time for the SSD controller can write all DRAM buffer data to flash, all data will be protected and without data loss.

The ability of Power Interrupt Data Protection Technology is able to write 1.28MB of data within 60ms. This ensures all data in the DRAM buffer can be successfully written into flash.

Traditionally, super capacitors were applied in most SSD products, the advantages of tantalum capacitors over super capacitors are:

> Tantalum capacitors are electrolyte free.

It is able to maintain its designed capacitance for several years when used within design limits.

> Wide operating temperature range.

Tantalum capacitors can operate from temperature range of -55C to +125C, which is very suitable for Industrial. and military usage.

> Tantalum capacitors have an ultimate high volumetric efficiency (CV/cc).

For example, a 50-microfarad tantalum capacitor can be equal and to properly replace a 500-microfarad aluminum capacitor.

# 1.6. Full-Drive Encryption

- Supports real time Full Disk Encryption (FDE) with Advanced Encryption Standard (AES) 128/256-bit strength Supports Trusted Computing Group (TCG) Opal protocol
- > Supports Default/Partition Key function up to 8 keys
- > Supports Hardware SHA 256 and True Random Number Generator (TRNG)

Notice: Customer / Engineer must have the AES relevant knowledge and the skill to write programs for their own application.

# 1.7. Mean Time Between Failure (MTBF)

# 1.7.1. Definition

MTBF (Mean time between failures) is defined as failure or maintenance required for the average time including failure detection and maintenance for the device. For a simple and maintainable unit, MTBF = MTTF + MTTR.

MTTF (mean time to failure) is defined as the expectation of random variables for time to failure.

**MTTR** (mean time to restoration) is the expectation of random variables of time required for restoration which includes the time required for confirmation that a failure occurred, as well as the time required for maintenance.

# 1.7.2. Obtaining MTBF

### There are two methods for obtaining MTBF:

**A. MTBF software estimation method:** by calculating all the MTBF data of all the components included in the bill of material, and the data of the completed products including actual parameters of voltage and electrical current using analysis software, the MTBF of the completed product is estimated.

**B. MTBF sample test method:** by determining a certain number of samples and a fixed time for testing, using a Arrhenius Model and Coffin-Manson Model to obtain parameters, and then using the formula with the parameters, the longevity and in so the reliability is proved.

Arrhenius Model:  $Af = e\{ (1/k \times Ea (1/273+Tmax - 1/273+Ttest) \}$ Coffin-Manson Model:  $Af = (\Delta Ttest/\Delta Tuse)m$ 

#### > APRO uses the A method to Estimate MTBF

MTBF is actually obtained by calculation which is just an estimation of future occurrences. The main reason to use the first method is that the data contains the analysis by all the parameters of components and actual parameters of voltage and electrical current of finished products, which is considered adequate and objective.

#### > Interpretation of MTBF Analysis

APRO estimates MTBF using a prediction methodology based on reliability data for the individual components in APRO products. The predicted MTBF based on Parts stress analysis Method of Telcordia Special Report SR-332, for components failure rates. Component data comes from several sources: device life tests, failure analysis of earlier equipment, device physics, and field returns.

The Telcordia model is based on the Telcordia document, Reliability Prediction Procedure for Electronic Equipment, Technical Reference SR-332. This standard basically modified the component models in MIL-HDBK-217 to better reflect the failure rates that AT&T Bell Lab equipment was experiencing in the field and was originally developed by AT&T Bell Lab as the Bellcore model.

This model supports different failure rate calculation methods in order to support the taking into account of stress, burn-in, laboratory, or field data. A Parts Count or Parts Stress analysis is included in Telcordia performance. Relex supports Telcordia Issues 1 and 2 and also Bellcore Issues 4, 5, and 6.Telcordia Issue 2, released in September 2006, are supported by Relex and Telcordia Issue 1, released in May 2001, is replaced with Relex. Refer to Telcordia Issue 2 Fields for information about the fields in Relex Reliability Studio specific to Telcordia Issue 2.

### Purpose of the analyses

The purpose of these analyses is to obtain early estimation of device reliability during engineering and customer validation stages. The prediction results will expose the reliability of whole assembly, viewed as a set of serially connected electronic components. Rating of the assembly electronic components will show the ratio between actual critical elements parameters and their specification limits. The purpose of component rating is to improve a product's inherent design reliability, increase its number of operating times, and to reduce warranty costs and to achieve a more robust design.

# 1.7.3. Definitions

| Term                       | Definition                                                                                        |
|----------------------------|---------------------------------------------------------------------------------------------------|
| Failure                    | The event, or inoperable state, in which any item or part of an item does not, or would not,      |
| railule                    | perform as previously specified.                                                                  |
| Failure rate               | The total number of failures within an item population, divided by the total number of life units |
| Failure rate               | expended by that population, during a particular measurement interval under stated condition.     |
| FIT                        | Failures In Time: the number of failures in 1 billion hours.                                      |
| РРМ                        | Part per million: the number of failures in 1 million hours.                                      |
| Mean Time Between Failures | A basic measure of reliability for repairable items: The mean number of life units during which   |
|                            | all parts of the item perform within their specified limits, during a particular measurement      |
| (MTBF)                     | interval under stated conditions.                                                                 |
|                            | Ground, Fixed, Controlled: Nearly zero environmental stress with optimum engineering              |
| GB                         | operation and maintenance. Typical applications are central office, environmentally controlled    |
| GB                         | vaults, environmentally controlled remote shelters, and environmentally controlled customer       |
|                            | premise area.                                                                                     |
|                            | Ground, Fixed, Uncontrolled: Some environmental stress with limited maintenance. Typical          |
| GF                         | applications are manholes, poles, remote terminals, and customer premise areas subject to         |
|                            | shock, vibration, temperature, or atmospheric variations.                                         |

### Software & Database

Analysis Software & Analysis Method Software Name : Relex Reliability Studio 2008 Software Version : Relex Studio 2008

# Analysis Method

The prediction method used was Telcordia SR-332, Issue 2,

Parts Count

Failure rate ( $\lambda$ ) = 10<sup>9</sup> hours (FITs)

MTBF=1/**λ** 

```
\boldsymbol{\lambda}_{\text{SSi}} = \boldsymbol{\lambda}_{\text{Gi}} \mathbf{T} \mathbf{T}_{\text{Qi}} \mathbf{T} \mathbf{T}_{\text{Si}} \mathbf{T} \mathbf{T}_{\text{Ti}}
```

Where  $\pmb{\lambda}_{\text{Gi}}$  : Generic steady-state failure rate for device i

 $\textbf{TT}_{\text{Qi}}$  : Quality factor for device i

 $\textbf{TT}_{Si}$  : Stress factor for device i

 $\mathbf{TT}_{Ti}$  : Temperature factor for device i

# Calculation Parameter

Operation Temperature :  $25^{\circ}$ C

Environment : Ground Benign, Controlled

Operation Stress : 50% (Voltage, Current, Power)

Method : Method I, Case 3

# **Product Specifications**

Products are advertised with MTBF up to 1 million hours in the market. Take one million hours as an example, the product's estimated life is 114 years. However, the current rapid progress of technology, advancement of flash storage device's manufacturing process research and development, and the supply period of former flash IC manufacturing processes are crucial to the actual life expectancy of flash products. In short, the MTBF of flash storage is for reference only. Good customer service and technical support provided by manufacturers is the most significant issue regarding to the life-span of products.

#### Remark:

All the details of testing and data are for reference only and do not imply any products performance as a result. MTBF is only an estimated date and is depends on both hardware and software. User shall not assume that all the products have the same MTBF as APRO estimates.

# 2. Product Specifications

For all the following specifications, values are defined at ambient temperature and nominal supply voltage unless otherwise stated.

# 2.1. System Environmental Specifications

Table 1: Environmental Specification

| APRO SLC Industrial 2.5" Rugged Metal SATA |                            | Standard Grade                                                       | Industrial Grade |  |  |  |
|--------------------------------------------|----------------------------|----------------------------------------------------------------------|------------------|--|--|--|
|                                            | SSD BON-III series         | SR2SRxxxG-MSCTC-UFE(USE) WR2SRxxxG-MSITI-UFE(U                       |                  |  |  |  |
| Tommoroturo                                | Operating:                 | 0°C ~ +70°C                                                          | -40°C ~ +85°C    |  |  |  |
| Temperature                                | Non-operating:             | -20°C ~ +80°C                                                        | -50°C ~ +95°C    |  |  |  |
| Humidity                                   | Operating & Non-operating: | on-operating: 10% ~ 95% non-condensing                               |                  |  |  |  |
| Vibration                                  | Frequency/Acceleration:    | 70 Hz to 2000 Hz, 15G, 3 axes                                        |                  |  |  |  |
| Shock                                      | Operating & Non-operating: | 0.5ms, 1500 G, 3 axes                                                |                  |  |  |  |
|                                            | Temperature:               | 24°C                                                                 |                  |  |  |  |
| Electrostatic<br>Relative Humidity:        |                            | 49% (RH)                                                             |                  |  |  |  |
| Discharge                                  | . /                        | Device functions are affected, but EUT will be back to its normal or |                  |  |  |  |
| (ESD)                                      | +/-4KV:                    | operational state automatically.                                     |                  |  |  |  |

# 2.2. System Power Requirements

### Table 2: Power Requirement

| APRO SLC Industrial 2.5" Rugged Metal SATA III SSD BON-III series |                |                  |  |
|-------------------------------------------------------------------|----------------|------------------|--|
| DC Input Voltage (VCC)                                            |                | 5V±5%            |  |
|                                                                   | Reading Mode : | 350.0 mA. (max.) |  |
|                                                                   | Writing Mode : | 420.0 mA. (max.) |  |
| Maximum average value                                             | During FE/SE : | 330.0 mA. (max.) |  |
|                                                                   | Idle Mode :    | 120.0 mA. (max.) |  |

# 2.3. System Performance

### Table 3: System Performances

| Data Transfer Mode supporting                   |                              | Serial ATA Gen-III (6.0Gb/s = 768MB/s) |          |       |       |       |       |       |
|-------------------------------------------------|------------------------------|----------------------------------------|----------|-------|-------|-------|-------|-------|
| Read:                                           |                              | 0.19 ms.                               |          |       |       |       |       |       |
| 4KB Random a                                    | ccess time                   | Write:                                 | 0.04 ms. |       |       |       |       |       |
| Capacity                                        |                              | 8GB                                    | 16GB     | 32GB  | 64GB  | 128GB | 256GB |       |
| <b>NA</b> - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | Sequential Read (MB/s)       | 78.5                                   | 159.1    | 173.3 | 173.2 | 173.4 | 173.4 |       |
| Maximum<br>Performance                          | Sequential V                 | /rite(MB/s)                            | 41.0     | 82.1  | 161.3 | 162.0 | 165.9 | 165.8 |
| Performance                                     | 4KB Random Read IOPS (QD32)  | 14.6K                                  | 28K      | 36K   | 36K   | 35K   | 36K   |       |
|                                                 | 4KB Random Write IOPS (QD32) |                                        | 10.2K    | 20K   | 40K   | 39K   | 40K   | 40K   |

Note:

1. The performance was measured using CrystalDiskMarkv5.0x64 with SATA 6Gbps host.

- 2. Samples were built using Toshiba SLC NAND flash
- 3. Performance may differ according to flash configuration and platform.

# 2.4. System Reliability

# Table 4: System Reliability

| Wear-leveling             | Algorithms  | Global wear-leveling algorithms                                       |
|---------------------------|-------------|-----------------------------------------------------------------------|
| Bad Block Man             | agement     | Supportive                                                            |
| ECC Technolog             | У           | Hardware BCH ECC capable of correcting errors up to 66-bit/1KB (ECC). |
| Erase counts              |             | NAND SLC Flash Cell Level : 60K P/E Cycles                            |
| TBW (Tera Byt             | es Written) |                                                                       |
|                           | 8GB         | 56.1                                                                  |
|                           | 16GB        | 122.6                                                                 |
| Consoity                  | 32GB        | 225.6                                                                 |
| Capacity<br>64GB<br>128GB | 64GB        | 456.3                                                                 |
|                           | 128GB       | 903.7                                                                 |
| 256GB                     |             | 1,807.4                                                               |

Note:

- > Samples were built using Toshiba SLC NAND flash.
- > The test followed JEDEC219A client endurance workload.
- The endurance of SSD could be estimated based on user behavior, NAND endurance cycles, and write amplification factor.
   It is not guaranteed by flash vendor.

# 2.5. Physical Specifications

Refer to Table 5 and see Figure 2 for APRO SLC Industrial 2.5" Rugged Metal SATA III SSD BON-III series physical specifications and dimensions.

| Length:    | 100.0 mm           |
|------------|--------------------|
| Width:     | 70.0 mm            |
| Thickness: | 9.20 mm            |
| Weight:    | 100.0 g / 3.52 oz. |

Table 5: Physical Specifications of APRO SLC Industrial 2.5" Rugged Metal SATA III SSD BON-III series



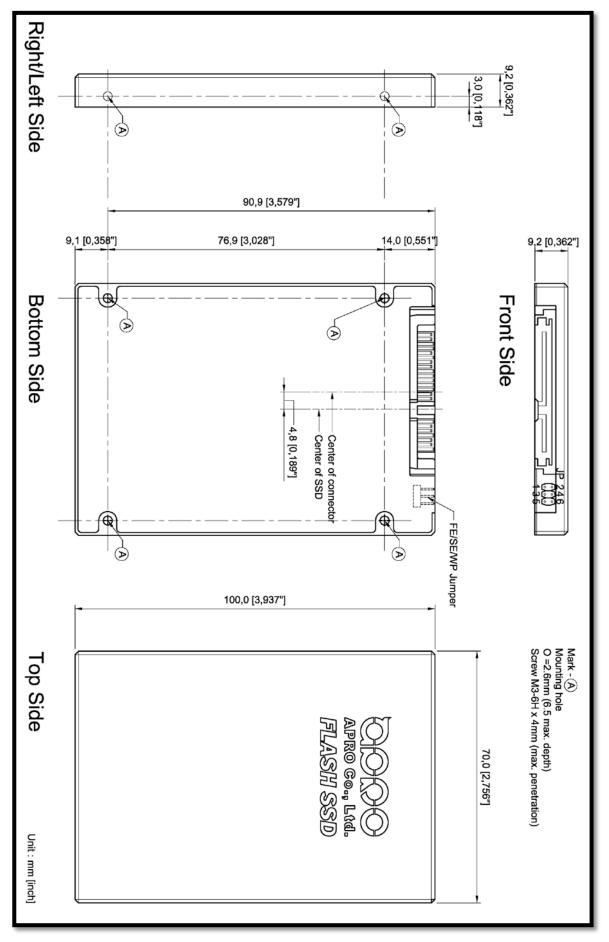



Figure 2: APRO SLC Industrial 2.5" Rugged Metal SATA III SSD BON-III series Dimension

# 2.6. Conformal coating

Conformal coating is a protective, dielectric coating designed to conform to the surface of an assembled printed circuit board. Commonly used conformal coatings include silicone, acrylic, urethane and epoxy. APRO applies only silicone on APRO storages products upon requested especially by customers. The type of silicone coating features good thermal shock resistance due to flexibility. It is also easy to apply and repair.

Conformal coating offers protection of circuitry from moisture, fungus, dust and corrosion caused by extreme environments. It also prevents damage from those Flash storages handling during construction, installation and use, and reduces mechanical stress on components and protects from thermal shock. The greatest advantage of conformal coating is to allow greater component density due to increased dielectric strength between conductors.

APRO use MIL-I-46058C silicon conformal coating

# 3. Interface Description

# 3.1. 2.5" Rugged Metal SATA III SSD BON-III series interface

APRO SLC Industrial 2.5" Rugged Metal SATA III SSD BON-III series is equipped with 7 pins in the signal segment and 15 pins in the power segment.

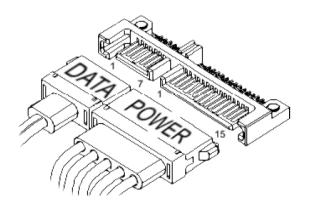



Figure 3: The connectors of Signal Segment and Power Segment

# 3.2. Pin Assignments

APRO SLC Industrial 2.5" Rugged Metal SATA III SSD BON-III series operates with standard SATA pin-out.

The pin assignments are listed in below table 6.

| Name | Туре | Description                |
|------|------|----------------------------|
| S1   | GND  | NA                         |
| S2   | A+   | Differential Simpl Dain A  |
| S3   | A-   | Differential Signal Pair A |
| S4   | GND  | NA                         |
| S5   | В-   | Differential Simpl Dain D  |
| S6   | B+   | Differential Signal Pair B |
| S7   | GND  | NA                         |

Table 6 - Pin Assignments

| K   | ey and Spacing separate s | ignal and power segments                           |
|-----|---------------------------|----------------------------------------------------|
| P1  | NC                        | NA                                                 |
| P2  | NC                        | NA                                                 |
| Р3  | NC                        | NA                                                 |
| P4  | GND                       | NA                                                 |
| P5  | GND                       | NA                                                 |
| P6  | GND                       | NA                                                 |
| Р7  | V5                        | 5V Power, Pre-Charge                               |
| P8  | V5                        | 5V Power                                           |
| Р9  | V5                        | 5V Power                                           |
| P10 | GND                       | NA                                                 |
| P11 | DAS/DSS                   | Device Activity Signal / Disable Staggered Spin up |
| P12 | GND                       | NA                                                 |
| P13 | NC                        | NA                                                 |
| P14 | NC                        | NA                                                 |
| P15 | NC                        | NA                                                 |

# 4. Hardware Configuration of FE/SE Function

# 4.1. Fast / Secure Erase Jumper

APRO SLC Industrial 2.5" Rugged Metal SATA III SSD BON-III series has several security features, such as fast erase, secure erase and a newly added write-protect function. These functions can be triggered by different hardware jumper settings or by ATA commands.

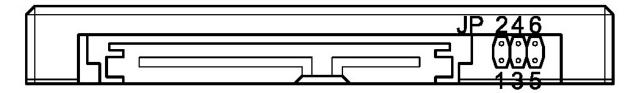



Figure 4: The jumper configuration of 2.5" SATA III SLC SSD

# 4.1.1. Fast Erase

Fast Erase Procedure is one of the default sanitizing procedure in APRO Secure Erase SSD Series, it is trigger by placing jumper head on Pin-1 and Pin-2, SSD will be then become fully erased and filled with 0xFF and random data.

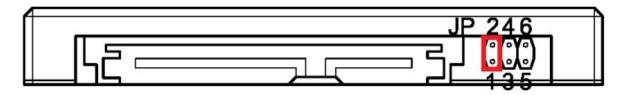
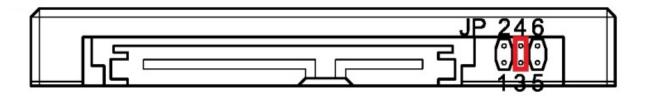
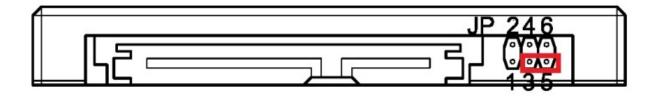



Figure 5: Fast Erase Jumper Setting

# 4.1.2. Secure Erase

To execute Secure Erase function, jumper must be set on Pin-3 and Pin-4. APRO provide varieties of Secure Erase standard as options, customer may choose whichever is suitable for their application.





Figure 6: Secure Erase Jumper Setting



# 4.2. Default Setting

When security function is not required, jumper head should be placed on Pin-3 and Pin-5, SSD will not take any actions, it can be

used as a normal storage device.





# 4.3. Write Protect Function

Write-Protect function can be enabled by setting the jumper head on Pin-5 and Pin-6, once it's enabled, it will abort any writing commands sent to the SSD. At this stage, SSD will become Read-Only and user will not be able to write or delete any data on the SSD.

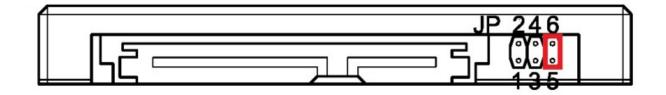



Figure 8: Write-Protect Function Jumper Setting

# 4.4. Secure Erase Standards

| Standard                      | Description                            |
|-------------------------------|----------------------------------------|
| Fast Erase                    | 1. Erase all media                     |
| Fast Elase                    | 2. fill with 0xFF and random data      |
|                               | 1. Erase the media                     |
| NSA Manual 130-2              | 2. Overwrite with random data twice    |
| NSA Manual 130-2              | 3. Erase again                         |
|                               | 4. Overwrite with 0x55                 |
| USA-AF AFSSI 5020             | 1. Erase the media                     |
| USA-AF AF351 5020             | 2. Overwrite with random data          |
|                               | 1. Erase the media                     |
| DoD 5220.22-M                 | 2. Overwrite with single character     |
|                               | 3. erase again                         |
|                               | 1. Erase the media                     |
| IRIG 106                      | 2. Overwrite with 0x55                 |
| IRIG 106                      | 3. Erase                               |
|                               | 4. Overwrite with 0xAA, erase          |
|                               | 1. Erase the media                     |
| USA Navy NAVSO P-5239-26      | 2. Overwrite with random data          |
|                               | 3. Erase again                         |
|                               | 1. Erase the media                     |
| USA-Army 380-19               | 2. Overwrite with random data          |
| USA-AITTy Sou-19              | 3. Fill with 0x55                      |
|                               | 4. Overwrite again with 0xAA           |
|                               | 1. Filled with 0x55                    |
| NISPOMSUP Chap 8, Sect. 8-501 | 2. Overwrite with 0Xaa                 |
|                               | 3. Overwrite again with random data    |
| NSA Manual 9-12               | 1. Erase the media                     |
|                               | 2. Overwrite with unclassified pattern |

### Table 7 – Secure Erase Procedures

# 4.4.1. Auto-Resume Features

APRO SLC Industrial 2.5" Rugged Metal SATA III SSD BON-III series supports auto-resume features. When encounter power interruption during sanitizing procedure, it will automatically resume sanitizing at the next power-on until the whole procedure is finished.

# 4.4.2. Random Data Written During the Sanitize Procedure

The random data used to overwrite user data is a digest of pseudo-random generation and real random data. The pseudo-random generation is seeded in such a manner that even if the SSD launches the Sanitize command under identical external conditions (for example, if the unit is powered on with Sanitize Interrupt active), it will produce different seeds and different pseudo-random data.

# 4.4.3. Protection Mechanism

The protection mechanism only allows customer to activate Fast Erase and Secure Erase once for each power-on cycle.

This is to protect APRO's SSD from being erased continuously and can indirectly extend the lifetime of flash. If user wishes to activate erase function again, power must be disconnect and then reconnect again.

# 4.4.4. Using the SSD After Sanitizing Procedure

After Fast Erase or Secure Erase is finished, storage must be reinitialized and partition should be rebuilt in order to be used again.

# 4.4.5. Required Time for Secure Erase Function

#### Table 8 – Erase time for all standard and capacities

| Capacity   | 08GB      | 16GB      | 32GB      | 64GB      | 128GB     | 256GB     |
|------------|-----------|-----------|-----------|-----------|-----------|-----------|
| Fast Erase | 17.5 secs | 17.5 secs | 22.6 secs | 22.5 secs | 29.9 secs | 59.1 secs |

Note: Erase time by other Secure Erase Standard must test by customer's own system.

# 5. Software Commands

The interface specified in *Table 8* enables defining a wide range of Sanitize procedures.

| Standard                         | Description                                                                                                                         | Command<br>(Register: Command) | Master Command<br>(Register: Sector count) |  |
|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------------------|--|
| Fast Erase                       | <ol> <li>Erase all media</li> <li>fill with 0xFF</li> </ol>                                                                         | 82h                            | 00h                                        |  |
| NSA Manual 130-2                 | <ol> <li>Erase the media</li> <li>Overwrite with random data<br/>twice</li> <li>Erase again</li> <li>Overwrite with 0x55</li> </ol> | 82h                            | 81h                                        |  |
| USA-AF AFSSI 5020                | <ol> <li>Erase the media</li> <li>Overwrite with random data</li> </ol>                                                             | 82h                            | 41h                                        |  |
| DoD 5220.22-M                    | <ol> <li>Erase the media</li> <li>Overwrite with single<br/>character</li> <li>erase again</li> </ol>                               | 82h                            | 84h                                        |  |
| IRIG 106                         | <ol> <li>Erase the media</li> <li>Overwrite with 0x55</li> <li>Erase</li> <li>Overwrite with 0xAA, erase</li> </ol>                 | 82h                            | D0h                                        |  |
| USA Navy NAVSO<br>P-5239-26      | <ol> <li>Erase the media</li> <li>Overwrite with random data</li> <li>Erase again</li> </ol>                                        | 82h                            | 85h                                        |  |
| USA-Army 380-19                  | <ol> <li>Erase the media</li> <li>Overwrite with random data</li> <li>Fill with 0x55</li> <li>Overwrite again with 0xAA</li> </ol>  | 82h                            | C1h                                        |  |
| NISPOMSUP Chap 8,<br>Sect. 8-501 | <ol> <li>Filled with 0x55</li> <li>Overwrite with 0Xaa</li> <li>Overwrite again with random data</li> </ol>                         | 82h                            | D1h                                        |  |

### Table 9 – Command Set of Secure Erase Procedures



# 5.1. Fast Erase

Below states the procedures of Fast Erase function.

- Erase all media.
- Fill with 0xFF.

# 5.1.1. Inputs for Enabling Fast Erase

#### Table 10 – Input Fast Erase Command Code (Enable)

| Register     | 7          | 6   | 5 | 4  | 3  | 2 | 1 | 0 |  |
|--------------|------------|-----|---|----|----|---|---|---|--|
| Features     |            |     |   | N  | A  |   |   |   |  |
| Sector count |            | 00h |   |    |    |   |   |   |  |
| LBA Low      |            | NA  |   |    |    |   |   |   |  |
| LBA Mid      |            |     |   | Ν  | A  |   |   |   |  |
| LBA High     |            |     |   | Ν  | A  |   |   |   |  |
| Device       | 1 1 1 0 NA |     |   |    |    |   |   |   |  |
| Command      |            |     |   | 82 | 2h |   |   |   |  |

# 5.1.2. Outputs for Enabling Fast Erase

### Table 11 – Output Fast Erase Command Code (Enable)

| Register     | 7   | 6    | 5   | 4   | 3   | 2  | 1  | 0   |  |
|--------------|-----|------|-----|-----|-----|----|----|-----|--|
| Error        |     | ΝΑ   |     |     |     |    |    |     |  |
| Sector count |     |      |     | Ν   | IA  |    |    |     |  |
| LBA Low      |     | NA   |     |     |     |    |    |     |  |
| LBA Mid      |     |      |     | Ν   | IA  |    |    |     |  |
| LBA High     |     |      |     | Ν   | IA  |    |    |     |  |
| Device       | obs | NA   | obs | DEV | NA  | NA | NA | NA  |  |
| Device       | 1   | 1    | 1   | 0   |     |    |    |     |  |
|              | BSY | DRDY | DF  | NA  | DRQ | NA | NA | ERR |  |
| Status       | 0   | 1    | 0   | 1   | 0   | 0  | 0  | 0   |  |

#### Device register

**DEV** - shall specify the selected device.

Status register

 $\ensuremath{\text{BSY}}$  - will be cleared to zero indicating command completion

DRDY - will be set to one.

DF (Device Fault) - will be cleared to zero.

DRQ - will be cleared to zero.



# 5.2. Secure Erase (Sanitizing Procedures)

# 5.2.1. NSA Manual 130-2

Below lists the Secure Erase procedures of NSA Manual 130-2.

- Erase all media.
- > Fill with random data twice.
- Erase all media.
- ► Fill with 0x55

### 5.2.1.1. Inputs for Enabling NSA Manual 130-2

### Table 12 – Input NSA Manual 130-2 Command Code (Enable)

| Register     | 7 | 6   | 5 | 4  | 3  | 2 | 1 | 0 |  |
|--------------|---|-----|---|----|----|---|---|---|--|
| Features     |   | ΝΑ  |   |    |    |   |   |   |  |
| Sector count |   | 81h |   |    |    |   |   |   |  |
| LBA Low      |   | NA  |   |    |    |   |   |   |  |
| LBA Mid      |   |     |   | Ν  | A  |   |   |   |  |
| LBA High     |   |     |   | Ν  | A  |   |   |   |  |
| Device       | 1 | 1   | 1 | 0  | NA |   |   |   |  |
| Command      |   |     |   | 82 | 2h |   |   |   |  |

#### 5.2.1.2. Outputs for Enabling NSA Manual 130-2

#### Table 13 – Output NSA Manual 130-2 Command Code (Enable)

| Register     | 7   | 6    | 5   | 4   | 3   | 2  | 1  | 0   |
|--------------|-----|------|-----|-----|-----|----|----|-----|
| Error        |     |      |     | Ν   | A   |    |    |     |
| Sector count |     |      |     | Ν   | A   |    |    |     |
| LBA Low      |     | NA   |     |     |     |    |    |     |
| LBA Mid      |     |      |     | Ν   | A   |    |    |     |
| LBA High     |     |      |     | Ν   | A   |    |    |     |
| Device       | obs | NA   | obs | DEV | NA  | NA | NA | NA  |
| Device       | 1   | 1    | 1   | 0   |     |    |    |     |
| Status       | BSY | DRDY | DF  | NA  | DRQ | NA | NA | ERR |
| Status       | 0   | 1    | 0   | 1   | 0   | 0  | 0  | 0   |

#### Device register

**DEV** - shall specify the selected device.

Status register

BSY - will be cleared to zero indicating command completion

DRDY - will be set to one.

DF (Device Fault) - will be cleared to zero.

DRQ - will be cleared to zero.



# 5.2.2. USA-AF AFFSI 5020

Below lists the Secure Erase procedures of USA-AF AFFSI 5020.

- > Erase all media.
- Fill with random data.

### 5.2.2.1. Inputs for Enabling USA-AF AFFSI 5020

Table 14 – Input USA-AF AFFSI 5020 Command Code (Enable)

| Register     | 7 | 6   | 5 | 4  | 3  | 2  | 1 | 0 |  |
|--------------|---|-----|---|----|----|----|---|---|--|
| Features     |   | ΝΑ  |   |    |    |    |   |   |  |
| Sector count |   | 41h |   |    |    |    |   |   |  |
| LBA Low      |   | NA  |   |    |    |    |   |   |  |
| LBA Mid      |   |     |   | Ν  | A  |    |   |   |  |
| LBA High     |   |     |   | Ν  | A  |    |   |   |  |
| Device       | 1 | 1   | 1 | 0  |    | NA |   |   |  |
| Command      |   |     |   | 82 | 2h |    |   |   |  |

#### 5.2.2.2. Outputs for Enabling USA-AF AFFSI 5020

Table 15 – Output USA-AF AFFSI 5020 Command Code (Enable)

| Register     | 7   | 6    | 5   | 4   | 3   | 2  | 1  | 0   |
|--------------|-----|------|-----|-----|-----|----|----|-----|
| Error        |     |      |     | N   | A   |    |    |     |
| Sector count |     |      |     | N   | A   |    |    |     |
| LBA Low      |     | NA   |     |     |     |    |    |     |
| LBA Mid      |     |      |     | N   | A   |    |    |     |
| LBA High     |     |      |     | N   | A   |    |    |     |
| Device       | obs | NA   | obs | DEV | NA  | NA | NA | NA  |
| Device       | 1   | 1    | 1   | 0   |     |    |    |     |
| Status       | BSY | DRDY | DF  | NA  | DRQ | NA | NA | ERR |
| Status       | 0   | 1    | 0   | 1   | 0   | 0  | 0  | 0   |

#### Device register

**DEV** - shall specify the selected device.

Status register

BSY - will be cleared to zero indicating command completion

DRDY - will be set to one.

DF (Device Fault) - will be cleared to zero.

DRQ - will be cleared to zero.



# 5.2.3. DoD 5220.22-M

Below lists the Secure Erase procedures of DoD 5220.22-M.

- Erase all media.
- > Overwrite with random character.
- Erase all media.

### 5.2.3.1. Inputs for Enabling DoD 5220.22-M

#### Table 16 – Input DoD 5220.22-M Command Code (Enable)

| Register     | 7 | 6        | 5 | 4  | 3  | 2 | 1 | 0 |  |
|--------------|---|----------|---|----|----|---|---|---|--|
| Features     |   | NA       |   |    |    |   |   |   |  |
| Sector count |   | 84h      |   |    |    |   |   |   |  |
| LBA Low      |   | NA       |   |    |    |   |   |   |  |
| LBA Mid      |   |          |   | Ν  | A  |   |   |   |  |
| LBA High     |   |          |   | Ν  | A  |   |   |   |  |
| Device       | 1 | 1 1 0 NA |   |    |    |   |   |   |  |
| Command      |   |          |   | 82 | 2h |   |   |   |  |

### 5.2.3.2. Outputs for Enabling DoD 5220.22-M

### Table 17 – Output DoD 5220.22-M Command Code (Enable)

| Register     | 7   | 6                                                                                                                                                                                                                                                                                                                                                | 5   | 4   | 3   | 2  | 1  | 0   |
|--------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|----|----|-----|
| Error        |     |                                                                                                                                                                                                                                                                                                                                                  |     | Ν   | A   |    |    |     |
| Sector count |     |                                                                                                                                                                                                                                                                                                                                                  |     | Ν   | A   |    |    |     |
| LBA Low      |     | NA                                                                                                                                                                                                                                                                                                                                               |     |     |     |    |    |     |
| LBA Mid      |     |                                                                                                                                                                                                                                                                                                                                                  |     | Ν   | IA  |    |    |     |
| LBA High     |     | NA         NA       Obs       NA       Obs       NA       ODEV       NA       NA       NA         obs       NA       Obs       DEV       NA       NA       NA       NA         1       1       1       O       Image: colspan="5">ODEV       NA       DA       DA         BSY       DRDY       DF       NA       DRQ       NA       NA       ERF |     |     |     |    |    |     |
| Device       | obs | NA                                                                                                                                                                                                                                                                                                                                               | obs | DEV | NA  | NA | NA | NA  |
| Device       | 1   | 1                                                                                                                                                                                                                                                                                                                                                | 1   | 0   |     |    |    |     |
| Ctatura      | BSY | DRDY                                                                                                                                                                                                                                                                                                                                             | DF  | NA  | DRQ | NA | NA | ERR |
| Status       | 0   | 1                                                                                                                                                                                                                                                                                                                                                | 0   | 1   | 0   | 0  | 0  | 0   |

#### Device register

**DEV** - shall specify the selected device.

Status register

 $\ensuremath{\text{BSY}}$  - will be cleared to zero indicating command completion

DRDY - will be set to one.

DF (Device Fault) - will be cleared to zero.

DRQ - will be cleared to zero.



# 5.2.4. IRIG 106

Below lists the Secure Erase procedures of IRIG 106.

- Erase all media.
- Fill with 0x55.
- Erase all media.
- Fill with 0xAA.
- Erase all media.

#### 5.2.4.1. Inputs for Enabling IRIG 106

#### Table 18 – Input IRIG 106 Command Code (Enable)

| Register     | 7 | 6  | 5 | 4  | 3  | 2  | 1 | 0 |  |  |
|--------------|---|----|---|----|----|----|---|---|--|--|
| Features     |   | NA |   |    |    |    |   |   |  |  |
| Sector count |   |    |   | D  | Dh |    |   |   |  |  |
| LBA Low      |   | NA |   |    |    |    |   |   |  |  |
| LBA Mid      |   |    |   | Ν  | A  |    |   |   |  |  |
| LBA High     |   |    |   | Ν  | A  |    |   |   |  |  |
| Device       | 1 | 1  | 1 | 0  |    | NA |   |   |  |  |
| Command      |   |    |   | 82 | 2h |    |   |   |  |  |

#### 5.2.4.2. Outputs for Enabling IRIG 106

Table 19 – Output IRIG 106 Command Code (Enable)

| Register     | 7   | 6    | 5   | 4   | 3   | 2  | 1  | 0   |
|--------------|-----|------|-----|-----|-----|----|----|-----|
| Error        |     |      |     | N   | IA  |    |    |     |
| Sector count |     |      |     | N   | IA  |    |    |     |
| LBA Low      |     |      |     | N   | IA  |    |    |     |
| LBA Mid      |     |      |     | N   | IA  |    |    |     |
| LBA High     |     |      |     |     |     |    |    |     |
| Davias       | obs | NA   | obs | DEV | NA  | NA | NA | NA  |
| Device       | 1   | 1    | 1   | 0   |     |    |    |     |
| Status       | BSY | DRDY | DF  | NA  | DRQ | NA | NA | ERR |
| Stalus       | 0   | 1    | 0   | 1   | 0   | 0  | 0  | 0   |

#### Device register

**DEV** - shall specify the selected device.

Status register

BSY - will be cleared to zero indicating command completion

DRDY - will be set to one.

DF (Device Fault) - will be cleared to zero.

DRQ - will be cleared to zero.

ERR - will be cleared to zero.

Sector Count - The number of Erase Failure Block



# 5.2.5. USA Navy NAVSO P-5239-26

Below lists the Secure Erase procedures of USA Navy NAVSO P-5239-26.

- 1. Erase all media.
- 2. Overwrite with random data.
- 3. Erase all media.

### 5.2.5.1. Inputs for Enabling USA Navy NAVSO P-5239-26

#### Table 20 – Input USA Navy NAVSO P-5239-26 Command Code (Enable)

| Register     | 7 | 6  | 5 | 4  | 3  | 2  | 1 | 0 |  |  |
|--------------|---|----|---|----|----|----|---|---|--|--|
| Features     |   |    |   | N  | A  |    |   |   |  |  |
| Sector count |   |    |   | 8! | ōh |    |   |   |  |  |
| LBA Low      |   | NA |   |    |    |    |   |   |  |  |
| LBA Mid      |   |    |   | Ν  | A  |    |   |   |  |  |
| LBA High     |   |    |   | Ν  | A  |    |   |   |  |  |
| Device       | 1 | 1  | 1 | 0  |    | NA |   |   |  |  |
| Command      |   |    |   | 82 | 2h |    |   |   |  |  |

### 5.2.5.2. Outputs for Enabling USA Navy NAVSO P-5239-26

#### Table 21 – Output USA Navy NAVSO P-5239-26 Command Code (Enable)

| Register     | 7   | 6                                                                                                                                                                                          | 5   | 4   | 3   | 2  | 1  | 0   |
|--------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|----|----|-----|
| Error        |     |                                                                                                                                                                                            |     | N   | A   |    |    |     |
| Sector count |     |                                                                                                                                                                                            |     | N   | A   |    |    |     |
| LBA Low      |     | NA                                                                                                                                                                                         |     |     |     |    |    |     |
| LBA Mid      |     |                                                                                                                                                                                            |     | N   | IA  |    |    |     |
| LBA High     |     | NA         NA         NA         Obs       NA       Obs       DEV       NA       NA       NA         1       1       1       Obs       Image: Colspan="4">Obs       Image: Colspan="4">Obs |     |     |     |    |    |     |
| Device       | obs | NA                                                                                                                                                                                         | obs | DEV | NA  | NA | NA | NA  |
| Device       | 1   | 1                                                                                                                                                                                          | 1   | 0   |     |    |    |     |
| Status       | BSY | DRDY                                                                                                                                                                                       | DF  | NA  | DRQ | NA | NA | ERR |
| Status       | 0   | 1                                                                                                                                                                                          | 0   | 1   | 0   | 0  | 0  | 0   |

#### Device register

**DEV** - shall specify the selected device.

Status register

 $\ensuremath{\text{BSY}}$  - will be cleared to zero indicating command completion

DRDY - will be set to one.

DF (Device Fault) - will be cleared to zero.

DRQ - will be cleared to zero.



# 5.2.6. USA-Army 380-19

Below lists the Secure Erase procedures of USA-Army 380-19.

- 1. Erase all media.
- 2. Overwrite with random data.
- 3. Fill with 0x55.
- 4. Fill with 0xAA

#### 5.2.6.1. Inputs for Enabling USA-Army 380-19

#### Table 22 – Input USA-Army 380-19 Command Code (Enable)

| Register     | 7 | 6   | 5 | 4  | 3  | 2 | 1 | 0 |  |
|--------------|---|-----|---|----|----|---|---|---|--|
| Features     |   | NA  |   |    |    |   |   |   |  |
| Sector count |   | C1h |   |    |    |   |   |   |  |
| LBA Low      |   | NA  |   |    |    |   |   |   |  |
| LBA Mid      |   |     |   | N  | A  |   |   |   |  |
| LBA High     |   |     |   | N  | A  |   |   |   |  |
| Device       | 1 | 1   | 1 | 0  | NA |   |   |   |  |
| Command      |   |     |   | 82 | 2h |   |   |   |  |

#### 5.2.6.2. Outputs for Enabling USA-Army 380-19

### Table 23 – Output USA-Army 380-19 Command Code (Enable)

| Register     | 7   | 6        | 5   | 4   | 3   | 2  | 1  | 0   |
|--------------|-----|----------|-----|-----|-----|----|----|-----|
| Error        |     |          |     | Ν   | IA  |    |    |     |
| Sector count |     |          |     | N   | IA  |    |    |     |
| LBA Low      |     |          |     | N   | IA  |    |    |     |
| LBA Mid      |     |          |     | N   | IA  |    |    |     |
| LBA High     |     | NA<br>NA |     |     |     |    |    |     |
| Device       | obs | NA       | obs | DEV | NA  | NA | NA | NA  |
| Device       | 1   | 1        | 1   | 0   |     |    |    |     |
| Statua       | BSY | DRDY     | DF  | NA  | DRQ | NA | NA | ERR |
| Status       | 0   | 1        | 0   | 1   | 0   | 0  | 0  | 0   |

#### Device register

**DEV** - shall specify the selected device.

Status register

BSY - will be cleared to zero indicating command completion

DRDY - will be set to one.

DF (Device Fault) - will be cleared to zero.

DRQ - will be cleared to zero.



# 5.2.7. NISPOMSUP Chap 8, Sect. 8-501

Below lists the Secure Erase procedures of NISPOMSUP Chap 8, Sect. 8-501.

- 1. Fill with 0x55.
- 2. Overwrite with 0xAA.
- 3. Overwrite with random data.

### 5.2.7.1. Inputs for Enabling NISPOMSUP Chap 8, Sect. 8-501

Table 24 – Input NISPOMSUP Chap 8, Sect. 8-501 Command Code (Enable)

| Register     | 7 | 6   | 5 | 4  | 3  | 2 | 1 | 0 |  |
|--------------|---|-----|---|----|----|---|---|---|--|
| Features     |   | NA  |   |    |    |   |   |   |  |
| Sector count |   | D1h |   |    |    |   |   |   |  |
| LBA Low      |   | ΝΑ  |   |    |    |   |   |   |  |
| LBA Mid      |   |     |   | Ν  | A  |   |   |   |  |
| LBA High     |   |     |   | Ν  | A  |   |   |   |  |
| Device       | 1 | 1   | 1 | 0  | NA |   |   |   |  |
| Command      |   |     |   | 82 | 2h |   |   |   |  |

### 5.2.7.2. Outputs for Enabling NISPOMSUP Chap 8, Sect. 8-501

Table 25 – Output NISPOMSUP Chap 8, Sect. 8-501 Command Code (Enable)

| Register     | 7   | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5   | 4   | 3   | 2  | 1  | 0   |
|--------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|----|----|-----|
| Error        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     | N   | A   |    |    |     |
| Sector count |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     | N   | A   |    |    |     |
| LBA Low      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     | N   | IA  |    |    |     |
| LBA Mid      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     | N   | IA  |    |    |     |
| LBA High     |     | NA       NA         NA       NA |     |     |     |    |    |     |
| Device       | obs | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | obs | DEV | NA  | NA | NA | NA  |
| Device       | 1   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1   | 0   |     |    |    |     |
| Status       | BSY | DRDY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DF  | NA  | DRQ | NA | NA | ERR |
| Status       | 0   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0   | 1   | 0   | 0  | 0  | 0   |

#### Device register

**DEV** - shall specify the selected device.

Status register

BSY - will be cleared to zero indicating command completion

**DRDY** - will be set to one.

DF (Device Fault) - will be cleared to zero.

DRQ - will be cleared to zero.

# Appendix A: Limited Warranty

APRO warrants your SLC Industrial 2.5" Rugged Metal SATA III SSD BON-III series against defects in material and workmanship for the life of the drive. The warranty is void in the case of misuse, accident, alteration, improper installation, misapplication or the result of unauthorized service or repair. The implied warranties of merchantability and fitness for a particular purpose, and all other warranties, expressed or implied, except as set forth in this warranty, shall not apply to the products delivered. In no event shall APRO be liable for any lost profits, lost savings or other incidental or consequential damages arising out of the use of, or inability to use, this product.

### BEFORE RETURNING PRODUCT, A RETURN MATERIAL AUTHORIZATION (RMA) MUST BE OBTAINED FROM APRO.

Product shall be returned to APRO with shipping prepaid. If the product fails to conform based on customers' purchasing orders, APRO will reimburse customers for the transportation charges incurred.

### WARRANTY PERIOD:

- SLC STD. Grade 3 years / Within 60K Erasing Counts
- SLC IND. Grade 5 years / Within 60K Erasing Counts

This document is for information use only and is **subject to change without prior notice**. APRO Co., Ltd. assumes no responsibility for any errors that may appear in this document, nor for incidental or consequential damages resulting from the furnishing, performance or use of this material. No part of this document may be reproduced, transmitted, transcribed, stored in a retrievable manner or translated into any language or computer language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual or otherwise, without the prior written consent of an officer of APRO Co., Ltd.

All parts of the APRO documentation are protected by copyright law and all rights are reserved.

APRO and the APRO logo are registered trademarks of APRO Co., Ltd.

Product names mentioned herein are for identification purposes only and may be trademarks and/or registered trademarks of their respective companies.

© 2018 APRO Corporation. All rights reserved