

COM Express™ conga-B7E3

Next Generation AMD EPYC™ Embedded 3000 SoCs with SP4r2 or SP4 BGA Package

User's Guide

Revision History

Revision	Date (yyyy-mm-dd)	Author	Changes
0.1	2020-08-11	AEM	Preliminary release
1.0	2020-12-08	AEM	 Added power consumption values to tables 6 "Power Consumption Values" and 7 "CMOS Battery Power Consumption" Added new cooling variants and adapter to section 4 "Cooling Solutions" Added sections 4.5 "SP4 HSP Dimensions" and 4.6 "SP4 HPA Dimensions" Indicated in several sections that 10 GbE is not supported in Windows Operating System Updated section 5.1.3 "Gigabit Ethernet" Removed Windows 7 and Windows 8 references from section 6.3.4 "OEM BIOS Code/Data" Added sections 9.3 "I²C Bus and 9.4 "SM Bus" Official release
1.1	2021-01-12	AEM	 Deleted the CSA's for the SP4 variant in table 8 "Cooling Solution Variants" Deleted section 4.4 "SP4 CSA Dimensions"
1.2	2021-08-02	AEM	 Added Software License Information Changed congatec AG to congatec GmbH Updated the Power Supply Implementation Guidelines in section 5.1.11 "Power Control" Updated section 6.4 "congatec Battery Management interface" Updated section 10.5 "Supported Flash Devices"
1.3	2021-09-23	AEM	 Changed the NVMe feature on SP4 variants to assembly option Updated the 10 Gb port 2-3 routing for SP4r2 variants in section 3 "Block Diagram"

Preface

This user's guide provides information about the components, features, connectors and system resources available on the conga-B7E3. It is one of three documents that should be referred to when designing a COM Express™ application. The other reference documents that should be used include the following:

COM Express[™] Design Guide COM Express[™] Specification

The links to these documents can be found on the congatec GmbH website at www.congatec.com

Software Licenses

Notice Regarding Open Source Software

The congatec products contain Open Source software that has been released by programmers under specific licensing requirements such as the "General Public License" (GPL) Version 2 or 3, the "Lesser General Public License" (LGPL), the "ApacheLicense" or similar licenses.

You can find the specific details at https://www.congatec.com/en/licenses/. Search for the revision of the BIOS/UEFI or Board Controller Software (as shown in the POST screen or BIOS setup) to get the complete product related license information. To the extent that any accompanying material such as instruction manuals, handbooks etc. contain copyright notices, conditions of use or licensing requirements that contradict any applicable Open Source license, these conditions are inapplicable.

The use and distribution of any Open Source software contained in the product is exclusively governed by the respective Open Source license. The Open Source software is provided by its programmers without ANY WARRANTY, whether implied or expressed, of any fitness for a particular purpose, and the programmers DECLINE ALL LIABILITY for damages, direct or indirect, that result from the use of this software.

OEM/ CGUTL BIOS

BIOS/UEFI modified by customer via the congatec System Utility (CGUTL) is subject to the same license as the BIOS/UEFI it is based on. You can find the specific details at https://www.congatec.com/en/licenses/.

Disclaimer

The information contained within this user's guide, including but not limited to any product specification, is subject to change without notice.

congatec GmbH provides no warranty with regard to this user's guide or any other information contained herein and hereby expressly disclaims any implied warranties of merchantability or fitness for any particular purpose with regard to any of the foregoing. congatec GmbH assumes no liability for any damages incurred directly or indirectly from any technical or typographical errors or omissions contained herein or for discrepancies between the product and the user's guide. In no event shall congatec GmbH be liable for any incidental, consequential, special, or exemplary damages, whether based on tort, contract or otherwise, arising out of or in connection with this user's guide or any other information contained herein or the use thereof.

Intended Audience

This user's guide is intended for technically qualified personnel. It is not intended for general audiences.

Lead-Free Designs (RoHS)

All congatec GmbH designs are created from lead-free components and are completely RoHS compliant.

Electrostatic Sensitive Device

All congatec GmbH products are electrostatic sensitive devices. They are enclosed in static shielding bags, and shipped enclosed in secondary packaging (protective packaging). The secondary packaging does not provide electrostatic protection.

Do not remove the device from the static shielding bag or handle it, except at an electrostatic-free workstation. Also, do not ship or store electronic devices near strong electrostatic, electromagnetic, magnetic, or radioactive fields unless the device is contained within its original packaging. Be aware that failure to comply with these guidelines will void the congatec GmbH Limited Warranty.

Symbols

The following symbols are used in this user's guide:

Warning

Warnings indicate conditions that, if not observed, can cause personal injury.

Caution

Cautions warn the user about how to prevent damage to hardware or loss of data.

Notes call attention to important information that should be observed.

Copyright Notice

Copyright © 2020, congatec GmbH. All rights reserved. All text, pictures and graphics are protected by copyrights. No copying is permitted without written permission from congatec GmbH.

congatec GmbH has made every attempt to ensure that the information in this document is accurate yet the information contained within is supplied "as-is".

Trademarks

Product names, logos, brands, and other trademarks featured or referred to within this user's guide, or the congatec website, are the property of their respective trademark holders. These trademark holders are not affiliated with congatec GmbH, our products, or our website.

Warranty

congatec GmbH makes no representation, warranty or guaranty, express or implied regarding the products except its standard form of limited warranty ("Limited Warranty") per the terms and conditions of the congatec entity, which the product is delivered from. These terms and conditions can be downloaded from www.congatec.com. congatec GmbH may in its sole discretion modify its Limited Warranty at any time and from time to time.

The products may include software. Use of the software is subject to the terms and conditions set out in the respective owner's license agreements, which are available at www.congatec.com and/or upon request.

Beginning on the date of shipment to its direct customer and continuing for the published warranty period, congatec GmbH represents that the products are new and warrants that each product failing to function properly under normal use, due to a defect in materials or workmanship or due to non conformance to the agreed upon specifications, will be repaired or exchanged, at congatec's option and expense.

Customer will obtain a Return Material Authorization ("RMA") number from congatec GmbH prior to returning the non conforming product freight prepaid. congatec GmbH will pay for transporting the repaired or exchanged product to the customer.

Repaired, replaced or exchanged product will be warranted for the repair warranty period in effect as of the date the repaired, exchanged or replaced product is shipped by congatec, or the remainder of the original warranty, whichever is longer. This Limited Warranty extends to congatec's direct customer only and is not assignable or transferable.

Except as set forth in writing in the Limited Warranty, congatec makes no performance representations, warranties, or guarantees, either express or implied, oral or written, with respect to the products, including without limitation any implied warranty (a) of merchantability, (b) of fitness for a particular purpose, or (c) arising from course of performance, course of dealing, or usage of trade.

congatec GmbH shall in no event be liable to the end user for collateral or consequential damages of any kind. congatec shall not otherwise be liable for loss, damage or expense directly or indirectly arising from the use of the product or from any other cause. The sole and exclusive remedy against congatec, whether a claim sound in contract, warranty, tort or any other legal theory, shall be repair or replacement of the product only.

Certification

congatec GmbH is certified to DIN EN ISO 9001 standard.

Technical Support

congatec GmbH technicians and engineers are committed to providing the best possible technical support for our customers so that our products can be easily used and implemented. We request that you first visit our website at www.congatec.com for the latest documentation, utilities and drivers, which have been made available to assist you. If you still require assistance after visiting our website then contact our technical support department by email at support@congatec.com

Terminology

Term	Description
10GBASE	10 Gbit Ethernet
2500BASE	2.5 Gbit Ethernet
ВМС	Baseboard Management Controller
GB	Gigabyte
GHz	Gigahertz
Gbps	Gigabit per second
kB	Kilobyte
kHz	Kilohertz
KR	GBASE-KR Ethernet Interface
KX	GBASE-KX Ethernet Interface
MB	Megabyte
Mbit	Megabit
Mbps	Megabit per second
MHz	Megahertz
MT/s	Megatransfer per second
N.C	Not connected
N.A	Not available
PEG	PCI Express Graphics
PCH	Platform Controller Hub
PCle	PCI Express
SATA	Serial ATA
SM	System Management
TBD	To be determined
TDP	Thermal Design Power

Contents

1	Introduction	11	5.1.8	SPI	32
			5.1.9	SMBus	
1.1	COM Express™ Concept		5.1.10	GPIOs	
1.2	Options Information	12	5.1.11	Power Control	
2	Specifications	14	5.1.12	Power Management	
2.1	Feature List		6	Additional Features	36
2.2	Supported Operating Systems		6.1	TPM 2.0	36
2.3	Mechanical Dimensions		6.2	congatec Board Controller (cBC)	
2.4	Supply Voltage Standard Power		6.2.1	Board Information	
2.4.1	Electrical Characteristics	16	6.2.2	General Purpose Input/Output	
2.4.2	Rise Time		6.2.3	, , , , , , , , , , , , , , , , , , , ,	
2.5	Power Consumption		6.2.3 6.2.4	Watchdog	
2.6	Supply Voltage Battery Power	18		I ² C Bus Power Loss Control	
2.7	Environmental Specifications	19	6.2.5 6.2.6	Fan Control	
3	Block Diagram	20	6.3	OEM BIOS Customization	
5	Block Diagram	20	6.3.1		
4	Cooling Solutions	21	6.3.2	OEM Default Settings	
			6.3.3	OEM BOST Lagra	
4.1	SP4r2 CSA Dimensions			OEM POST Logo	
4.2	SP4r2 HSP Dimensions		6.3.4	OEM BIOS Code/Data	
4.3	SP4r2 HPA Dimensions		6.3.5	OEM DXE Driver	
4.4	SP4 HSP Dimensions		6.4	congatec Battery Management Interface	
4.5	SP4 HPA Dimensions	26	6.5	API Support (CGOS)	
5	Connector Rows	27	6.6	Suspend to Ram	
5.1	Primary and Secondary Connector Rows	27	7	conga Tech Notes	
5.1.1	PCI Express TM		7.1	AMD®64 Architecture	
5.1.1.1	SP4 PCle Routing	28	7.1.1	AMD® Virtualization Technology	
5.1.1.2	SP4r2 PCle Routing	29	7.2	ACPI Suspend Modes and Resume Events	41
5.1.2	SATA		7.3	DIMM Configuration	42
5.1.3	Gigabit Ethernet	30	8	Signal Descriptions and Pinout Tables	/13
5.1.4	USB Interface				
5.1.5	General Purpose Serial Interface (UART)		8.1	Connector Signal Descriptions	
5.1.6	LPC Bus		8.2	Boot Strap Signals	61
5.1.7	l ² C		9	System Resources	62

9.1	I/O Address Assignment	62
9.2	PCI Configuration Space Map	
9.3	I ² C Bus	
9.4	SM Bus	64
10	BIOS Setup Description	65
10.1	Navigating the BIOS Setup Menu	65
10.2	BIOS Versions	
10.3	Updating the BIOS	66
10.4	Recovering from External Flash	
10.5	Supported Flash Devices	66

List of Tables

Table 1	COM Express™ 3.0 Pinout Types	11
Table 2	Commercial Variants	
Table 3	Industrial Variants	13
Table 4	Feature Summary	14
Table 5	Measurement Description	17
Table 6	Power Consumption Values	18
Table 7	CMOS Battery Power Consumption	18
Table 8	Cooling Solution Variants	
Table 9	Supported Interfaces on Rows A-B and C-D	27
Table 10	PCI Express Features	
Table 11	SATA Features	30
Table 12	Gigabit Ethernet Features	30
Table 13	USB Features	31
Table 14	UART Features	31
Table 15	Wake Events	41
Table 16	Terminology Descriptions	43
Table 17	Connector A–B Pinout	44
Table 18	Connector C–D Pinout	
Table 19	PCI Express Signal Descriptions (general purpose)	48
Table 20	SATA Signal Descriptions	
Table 21	Gigabit Ethernet Signal Descriptions	
Table 22	NC-SI Signal Descriptions	
Table 23	10 Gigabit Ethernet Signal Descriptions	
Table 24	USB 2. 0 Signal Descriptions	
Table 25	USB 3.0 Signal Descriptions	54
Table 26	LPC Signal Descriptions	
Table 27	SPI BIOS Flash Interface Signal Descriptions	55
Table 28	General Purpose Serial Interface Signal Descriptions	
Table 29	I2C Signal Descriptions	
Table 30	Miscellaneous Signal Descriptions	
Table 31	Power and System Management Signal Descriptions	
Table 32	Rapid Shutdown Signal Descriptions	57
Table 33	Thermal Protection Signal Descriptions	
Table 34	SMBus Signal Description	
Table 35	SDIO / General Purpose I/O Signal Descriptions	
Table 36	Power and GND Signal Descriptions	59

Table 37	Module Type Definition Signal Description	60
	Boot Strap Signal Descriptions	
	I/O Resources	
Table 40	PCI Device Mapping	62

1 Introduction

1.1 COM Express™ Concept

COM ExpressTM is an open industry standard defined specifically for COMs (computer on modules). Its creation makes it possible to smoothly transition from legacy interfaces to the newest technologies available today. COM ExpressTM modules are available in following form factors:

Mini 84mm x 55mm
 Compact 95mm x 95mm
 Basic 125mm x 95mm
 Extended 155mm x 110mm

Table 1 COM Express™ 3.0 Pinout Types

Types	Connector Rows	PCIe Lanes	PCI	IDE	SATA Ports	LAN ports	USB 2.0/ USB 3.0	Display Interfaces
Type 1	A-B	Up to 6		-	4	1	8/0	VGA, LVDS
Type 2	A-B C-D	Up to 22	32 bit	1	4	1	8/0	VGA, LVDS, PEG/SDVO
Type 3	A-B C-D	Up to 22	32 bit	-	4	3	8/0	VGA,LVDS, PEG/SDVO
Type 4	A-B C-D	Up to 32		1	4	1	8/0	VGA,LVDS, PEG/SDVO
Type 5	A-B C-D	Up to 32		-	4	3	8/0	VGA,LVDS, PEG/SDVO
Type 6	A-B C-D	Up to 24		-	4	1	8 / 4 1	VGA,LVDS/eDP, PEG, 3x DDI
Type 7	A-B C-D	Up to 32		-	2	5 (1x 1 GbE, 4x 10 GbE)	4/41	-
Type 10	A-B	Up to 4		-	2	1	8/2	LVDS/eDP, 1xDDI

¹ The SuperSpeed USB ports (USB 3.0) are not in addition to the USB 2.0 ports. Up to 4 of the USB 2.0 ports can support SuperSpeed USB.

The conga-B7E3 modules use the Type 7 pinout definition and comply with COM Express 3.0 specification. They are equipped with two high performance connectors that ensure stable data throughput, and support high bandwidth networking.

The COM (computer on module) integrates all the core components of a common PC and is mounted onto an application specific carrier board. COM modules are legacy-free design (no Super I/O, PS/2 keyboard and mouse) and provide most of the functional requirements for any embedded PC application. These functions include, but are not limited to a rich complement of contemporary high bandwidth serial interfaces such as PCI Express, Serial ATA, USB 3.0/2.0, and 10 Gigabit Ethernet.

Carrier board designers can use as little or as many of the I/O interfaces as deemed necessary. The carrier board can therefore provide all the interface connectors required to attach the system to the application specific peripherals. This versatility allows the designer to create a dense and optimized package, which results in a more reliable product while simplifying system integration. Most importantly, COM Express™ modules are scalable, which means once an application has been created there is the ability to diversify the product range through the use of different performance class or form factor size modules. Simply unplug one module and replace it with another; no redesign is necessary.

1.2 Options Information

The conga-B7E3 is currently available in seven variants (six commercial and one industrial). The table below shows the different configurations available.

Table 2 Commercial Variants

Part No.	,	048600	048602	048605	048606	048607	048608
Processor		AMD EPYC 3451 2.15 GHz 16 Cores	AMD EPYC 3351 1.9 GHz 12 Cores	AMD EPYC 3251 2.5 GHz 8 Cores	AMD EPYC 3201 1.5 GHz 8 Cores	AMD EPYC 3151 2.7 GHz 4 Cores	AMD EPYC 3101 2.1 GHz 4 Cores
BGA Sock	et	SP4	SP4	SP4r2	SP4r2	SP4r2	SP4r2
Package		Multi-die	Multi-die	Single-die	Single-die	Single-die	Single-die
Boost	Maximum ¹	3.0 GHz	3.0 GHz	3.1 GHz	3.1 GHz	2.9 GHz	2.9 GHz
Frequency	/ All Cores	2.45 GHz	2.75 GHz				
L3 Cache		32 MB	32 MB	16 MB	16 MB	16 MB	8 MB
Processor	Graphics	None	None	None	None	None	None
DDR4 Mei	mory	2666 MT/s	2666 MT/s	2666 MT/s	2133 MT/s	2666 MT/s	2666 MT/s
(ECC or N	lon-ECC)	triple channel (up to 96 GB)	triple channel (up to 96 GB)	dual channel (up to 64 GB)	dual channel (up to 64 GB)	dual channel (up to 64 GB)	dual channel (up to 64 GB)
Gigabit	10GBASE-KR ²	4	4	4	4	4	4
Ethernet	1 GbE	1	1	1	1	1	1
PCle Lane	s ^{3,4,5} (Gen 3)	32 lanes	32 lanes	24 lanes	24 lanes	24 lanes	24 lanes
Storage	SATA (6 Gbps)	2	2	2	2	2	2
	Onboard NVMe	Optional (BOM)	Optional (BOM)	N.A	N.A	N.A	N.A
USB Ports	i	4 ports (4 x USB 3.0)	4 ports (4 x USB 3.0)	4 ports (4 x USB 3.0)	4 ports (4 x USB 3.0)	4 ports (4 x USB 3.0)	4 ports (4 x USB 3.0)
TPM 2.0	·	Discrete	Discrete	Discrete	Discrete	Discrete	Discrete
Processor	TDP (cTDP)	100 W (80 W)	80 W (60 W)	55 W	30 W	45 W	35 W

Note

- ^{1.} Maximum frequency by any single core under normal operating conditions
- ^{2.} Not supported in Windows Operating System
- ^{3.} COM Express PCIe lane 4 is shared with the BMC on congatec carrier board.
- ^{4.} Each x16 lane supports a maximum of eight devices.
- ^{5.} Different lane configurations with assembly option (see section 5.1.1 "PCI Express™").

Table 3 Industrial Variants

Part-No.		048604	
Processor		AMD EPYC 3255	
		2.5 GHz 8 Cores	
BGA Socket		SP4r2	
Package		Single-die	
Boost	Maximum	3.1 GHz	
Frequency	All Cores		
L3 Cache		16 MB	
Processor Gr	aphics	None	
DDR4 Memo	ry	2666 MT/s	
(ECC or Non	-ECC)	dual channel	
		(up to 64 GB)	
Gigabit	10GBASE-KR ¹	4	
Ethernet	1 GbE	1	
PCIe Lanes 2,	^{3,4} (Gen 3)	24 lanes	
Storage	SATA (6 Gbps)	2	
	Onboard NVMe	N.A	
USB Ports		4 ports (4 x USB 3.0)	
TPM 2.0		Discrete	
Processor TD)P	55 W (25W)	
	<u> </u>		

- ^{1.} Not supported in Windows Operating System
- ^{2.} COM Express PCIe lane 4 is shared with the BMC on congatec carrier board.
- 3. Each x16 lane supports a maximum of eight devices
- ^{4.} Different lane configurations with assembly option (see section 5.1.1 "PCI Express $^{\text{TM}}$ ").

2 Specifications

2.1 Feature List

Table 4 Feature Summary

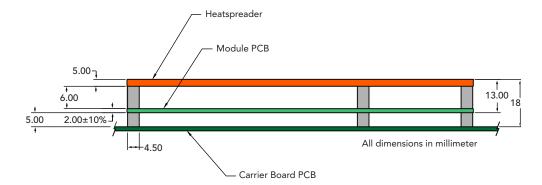
Form Factor	Based on COM Express™ standard pinout Type 7, rev. 3.0 (basic size 125 x 95 mm)					
Processor	AMD® EPYC™ Embedded 3000 product family					
Memory	Three memory sockets ¹ (two stacked on the top side and one on th - DDR4 ECC and non-ECC SODIMM modules - Triple channel (channel A, DIMM 0 and channel D, DIMM 2 or - Data rates up to 2666 MT/s - Maximum 96 GB capacity (32 GB per slot)					
congatec Board Controller	Multi-stage watchdog, non-volatile user data storage, manufacturing power loss control	and board information, board statistics, hardware monitoring, fan control, I2C bus,				
Chipset	Integrated in the SoC					
Ethernet	Gigabit Ethernet. Supports up to: - 4 x 10GBASE-KR ² - 1 x 1 GbE (standard interface)					
Audio	N.A					
Graphics	N.A					
Peripheral Interfaces	4x USB 3.0 ports (supports also USB 2.0) 2x SATA® (6 Gb/s) Up to 32 PCIe Gen. 3 lanes 2x UART GPIOs	LPC (no DMA) I ² C (fast mode, 400 KHz, multi-master) SMBus SPI				
BIOS	AMI Aptio® V UEFI 2.6 firmware 16 MB serial SPI flash with congatec Embedded BIOS features					
Onboard Storage	Optional NVMe SSD, up to 1 TB capacity (available on only SP4 variants)					
Power Management	Supports: - ACPI Specification Version 5.0 (Errata A) - Hardware power management - System Sleep State Control - S5 Wake events from the AMD Management Engine					
Security	Discrete SPI TPM 2.0 (Infineon SLB9670_VQ2.0) New AES Instructions for faster and better encryption					

^{1.} For DIMM configuration, see section 7.3 "DIMM Configuration"

^{2.} Some designs may require a 10 GbE PHY on the carrier board

2.2 Supported Operating Systems

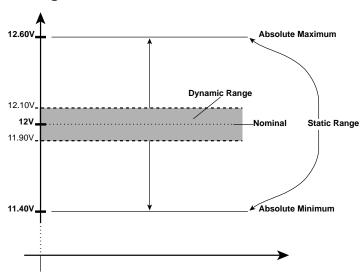
The conga-B7E3 supports the following operating systems.


- Microsoft® Windows® 10
- Microsoft® Windows® Server 2019
- Ubuntu
- Yocto Project
- Real Time Systems Hypervisior

For better system performance, use only 64-bit Operating Systems.

2.3 Mechanical Dimensions

- 95.0 mm x 125.0 mm
- Height approximately 18 or 21 mm (including heatspreader) depending on the carrier board connector that is used. If the 5 mm (height) carrier board connector is used, then approximate overall height is 18 mm. If the 8 mm (height) carrier board connector is used, then approximate overall height is 21 mm



2.4 Supply Voltage Standard Power

• 12 V DC ± 5 %

The dynamic range shall not exceed the static range.

2.4.1 Electrical Characteristics

Power supply pins on the module's connectors limit the amount of input power. The following table provides an overview of the limitations for pinout Type 7 (dual connector, 440 pins).

Power Rail	Module Pin	Nominal	Input	Derated	Max. Input Ripple	Max. Module Input	Assumed	Max. Load
	Current Capability	Input (Volts)	Range	Input (Volts)	(10Hz to 20MHz)	Power (w. derated input)	Conversion	Power
	(Amps)		(Volts)		(mV)	(Watts)	Efficiency	(Watts)
VCC_12V	12	12	11.4 - 12.6	11.4	+/- 100	137	85%	116
VCC_5V-SBY	2	5	4.75 - 5.25	4.75	+/- 50	9		
VCC_RTC	0.5	3	2.5 - 3.3		+/- 20			

2.4.2 Rise Time

The input voltages shall rise from 10 percent of nominal to 90 percent of nominal at a minimum slope of 250 V/s. The smooth turn-on requires that, during the 10 percent to 90 percent portion of the rise time, the slope of the turn-on waveform must be positive.

2.5 Power Consumption

The power consumption values were measured with the following setup:

- Input voltage +12 V
- conga-B7E3 COM
- modified congatec carrier board
- conga-B7E3 cooling solution
- Microsoft Windows Server 2019 (64 bit)

The CPU was stressed to its maximum workload.

Table 5 Measurement Description

The power consumption values were recorded during the following system states:

System State	Description	Comment
S0: Minimum value	Lowest frequency mode (LFM) with minimum core voltage during	
	desktop idle	
S0: Maximum value	Highest frequency mode (HFM/Turbo Boost)	The CPU was stressed to its maximum frequency
S0: Peak current	Highest current spike during the measurement of "S0: Maximum	Consider this value when designing the system's power supply to ensure
	value". This state shows the peak value during runtime	that sufficient power is supplied during worst case scenarios
S5	COM is powered by VCC_5V_SBY	

- 1. The fan and SATA drives were powered externally.
- 2. All other peripherals except the LCD monitor were disconnected before measurement.

Table 6 Power Consumption Values

The table below provides additional information about the conga-B7E3 power consumption. The values are recorded at various operating mode.

Part	Memory	H.W	BIOS	OS (64 bit)	CPU			Current (A)			
No.	Size	Rev.	Rev.		Variant	Cores	Freq. /Boost	S0: Min	S0: Max	S0: Peak	S5
							(GHz)				
048600	3 x 4 GB	Y.2	B7E3R013	Windows 10	AMD® EPYC® C3451	16	2.1 / 3.0	1.46	8.27	8.63	0.15
048602	3 x 4 GB	Y.2	B7E3R013	Windows 10	AMD® EPYC® C3351	12	1.9 / 3.0	1.14	5.93	6.52	0.15
048604	2 x 4 GB	A.1	B7E3R013	Windows 10	AMD® EPYC® C3255	8	2.5 / 3.1	0.92	4.51	4.88	0.15
048605	2 x 4 GB	A.1	B7E3R013	Windows 10	AMD® EPYC® C3251	8	2.5 / 3.1	0.96	4.46	4.59	0.15
048606	2 x 4 GB	A.1	B7E3R013	Windows 10	AMD® EPYC® C3201	8	1.5 / 3.1	0.83	2.62	2.78	0.15
048607	2 x 4 GB	A.1	B7E3R013	Windows 10	AMD® EPYC® C3151	8	2.7 / 2.9	0.93	3.94	4.13	0.15
048608	2 x 4 GB	A.1	B7E3R013	Windows 10	AMD® EPYC® C3101	4	2.1 / 2.9	0.92	2.63	2.69	0.15

2.6 Supply Voltage Battery Power

Table 7 CMOS Battery Power Consumption

RTC @	Voltage	Current
-10°C	3V DC	2.00 μΑ
20°C	3V DC	2.11 μΑ
70°C	3V DC	2.34 μΑ

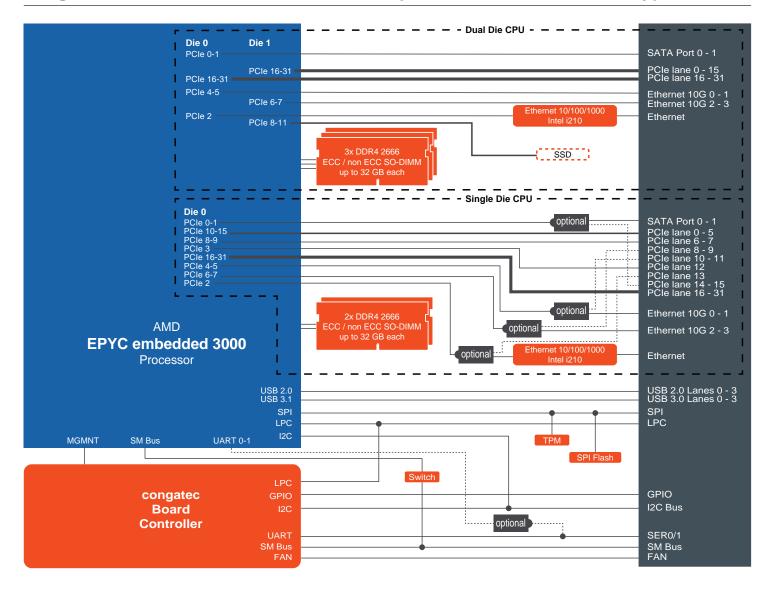
- 1. Do not use the CMOS battery power consumption values listed above to calculate CMOS battery lifetime.
- 2. Measure the CMOS battery power consumption of your application in worst case conditions (for example, during high temperature and high battery voltage).
- 3. Consider the self-discharge of the battery when calculating the lifetime of the CMOS battery. For more information, refer to application note AN9_RTC_Battery_Lifetime.pdf on congatec GmbH website at www.congatec.com/support/application-notes.
- 4. We recommend to always have a CMOS battery present when operating the conga-B7E3.

2.7 Environmental Specifications

Temperature Operation: 0° to 60°C Storage: -20° to 80°C (commercial variants)

Temperature Operation: -40° to 85°C Storage: -40° to 85°C (industrial variants)

Humidity Operation: 10% to 90% Storage: 5% to 95%



Caution

- 1. The above operating temperatures must be strictly adhered to at all times. When using a congatec heatspreader, the maximum operating temperature refers to any measurable spot on the heatspreader's surface.
- 2. Humidity specifications are for non-condensing conditions.

conga-B7E3

COM Express Rev. 3.0, Basic Size, Type 7 Pinout

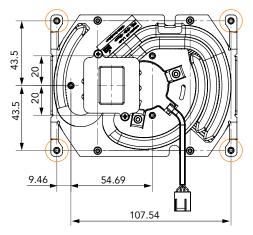
4 Cooling Solutions

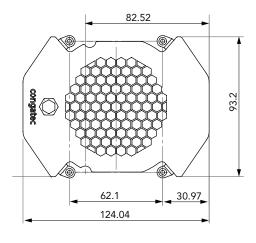
The conga-B7E3 supports the cooling solutions/adapter listed in the table below. The dimensions are shown in the sub-sections. All measurements are in millimeters.

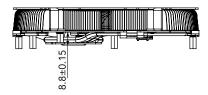
Table 8 Cooling Solution Variants

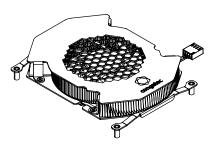
	Cooling Solution/ Adapter	Part No.	SoC Variant	Description
1	CSA	048650	SP4r2	Active cooling solution with four heat pipes, 12 V PWM-controlled fan and 2.7 mm bore-hole standoffs
		048651		Active cooling solution with four heat pipes, 12 V PWM-controlled fan and M2.5 mm threaded standoffs
2	HSP	048652		Heatspreader with integrated heat pipes and 2.7 mm bore-hole standoffs
		048653		Heatspreader with integrated heat pipes and M2.5 mm threaded standoffs
3	HPA	048660		Heatpipe adapter with metal bracket base, spring screws and accessory kit
4	HSP	048656	SP4	Heatspreader with integrated heat pipes and 2.7 mm bore-hole standoffs
		048657		Heatspreader with integrated heat pipes and M2.5 mm threaded standoffs
5	HPA	048662		Heatpipe adapter with metal bracket base, spring screws and accessory kit

- 1. We recommend a maximum torque of 0.4 Nm for carrier board mounting screws and 0.5 Nm for module mounting screws.
- 2. The gap pad material used on congatec heatspreaders may contain silicon oil that can seep out over time depending on the environmental conditions it is subjected to. For more information about this subject, contact your local congatec sales representative and request the gap pad material manufacturer's specification.

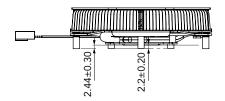

Caution

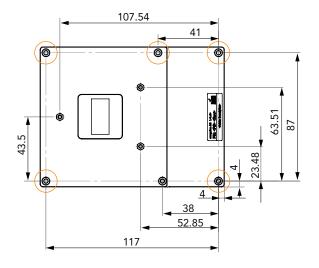

- 1. The congatec heatspreaders/cooling solutions are tested only within the commercial temperature range of 0° to 60°C. Therefore, if your application that features a congatec heatspreader/cooling solution operates outside this temperature range, ensure the correct operating temperature of the module is maintained at all times. This may require additional cooling components for your final application's thermal solution.
- 2. For adequate heat dissipation, use the mounting holes on the cooling solution to attach it to the module. Apply thread-locking fluid on the screws if the cooling solution is used in a high shock and/or vibration environment. To prevent the standoff from stripping or cross-threading, use non-threaded carrier board standoffs to mount threaded cooling solutions.

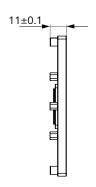


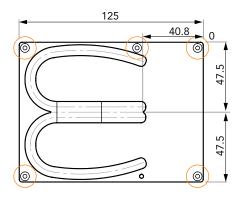

- 3. For applications that require vertically-mounted cooling solution, use only coolers that secure the thermal stacks with fixing post. Without the fixing post feature, the thermal stacks may move.
- 4. Do not exceed the maximum torque specified for the screws. Doing so may damage the module or/and the carrier board.

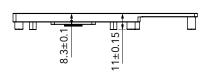
4.1 SP4r2 CSA Dimensions



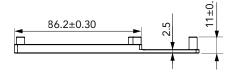

M2.5 x 10 mm threaded standoff for threaded version or ø2.7 x 10 mm non-threaded standoff for borehole version

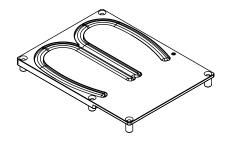


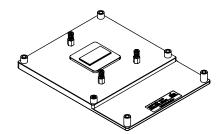


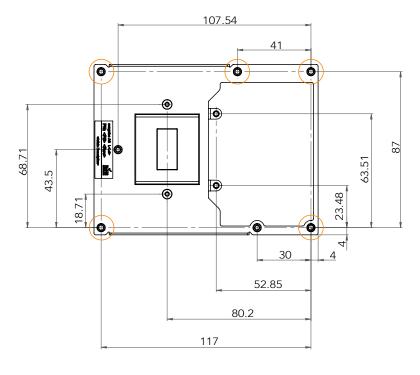


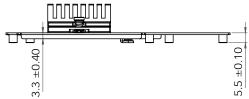
4.2 SP4r2 HSP Dimensions

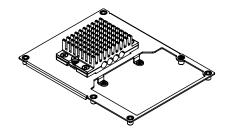


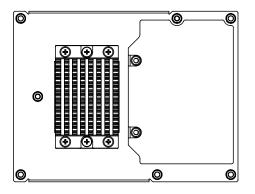




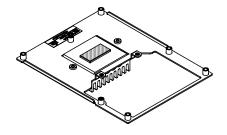


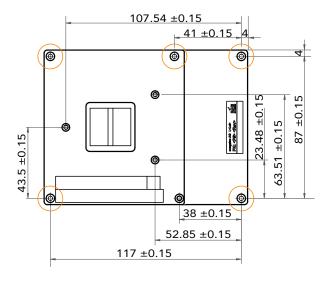


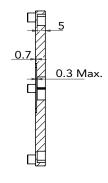


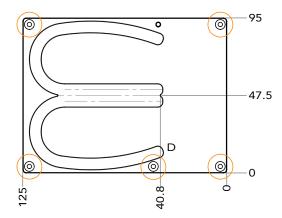


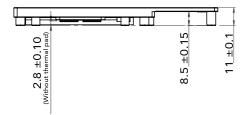
4.3 SP4r2 HPA Dimensions



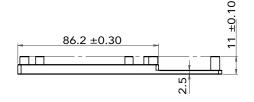


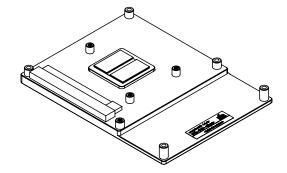


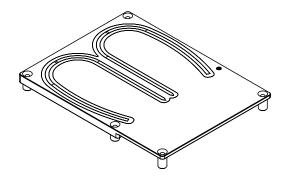

M2.5 x 11 mm threaded standoff for threaded version or ø2.7 x 11 mm non-threaded standoff for borehole version

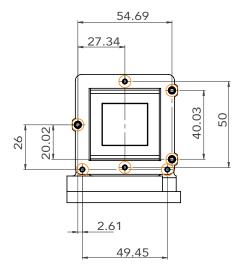


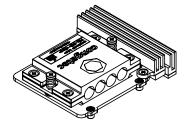
4.4 SP4 HSP Dimensions

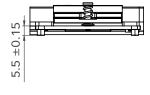




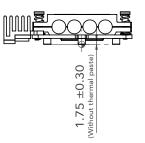


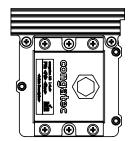


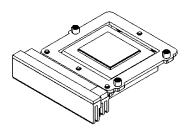




4.5 SP4 HPA Dimensions







M2.5 threaded screws

5 Connector Rows

The conga-B7E3 is connected to the carrier board via two 220-pin connectors (COM Express Type 7 pinout). These connectors are broken down into four rows. The primary connector consists of rows A and B while the secondary connector consists of rows C and D.

5.1 Primary and Secondary Connector Rows

The following subsystems can be found on the primary and secondary connector rows.

Table 9 Supported Interfaces on Rows A-B and C-D

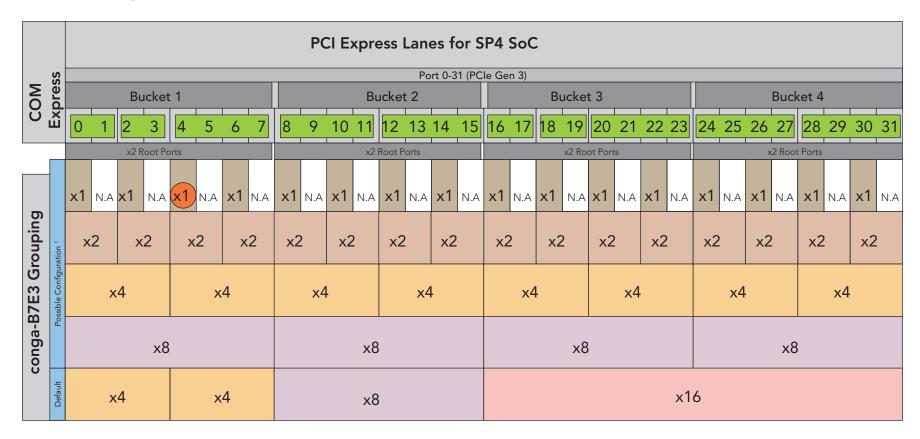
Interfaces	Rows A–B	Rows C–D
SATA	2	-
USB 2.0	4	-
USB 3.0	-	4 1
Gigabit Ethernet	1x 1 Gbps	Up to 4 x 10GBASE-KR ²
PCIe Gen 3	14 lanes ²	18 lanes ²
Buses	SPI, LPC, SMB, I2C	-
congatec System Mgmt.	GPIOs, fan control, 2x UARTs	-

^{1.} Superspeed signals

5.1.1 PCI Express™

Table 10 PCI Express Features

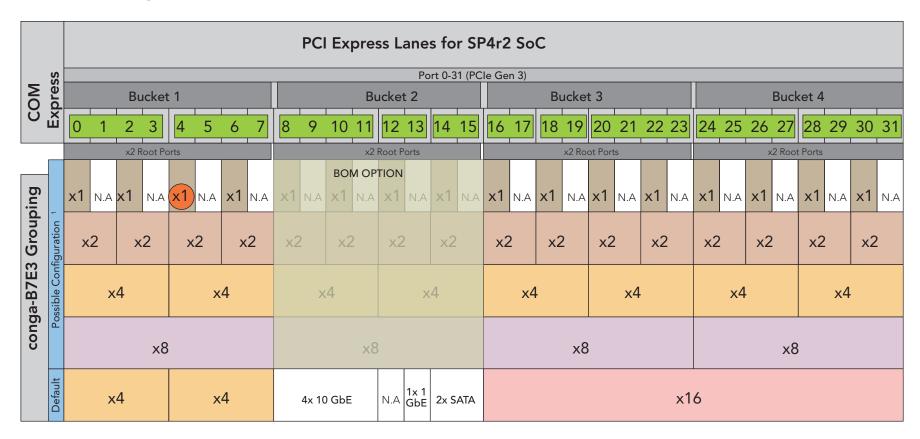
Rows A–B	Rows C–D
14 PCle lanes:	Up to 18 PCle lanes:
- PCle Gen. 3 lanes with up to 8 GTps	- PCle Gen. 3 lanes with up to 8 GTps
- x2 root ports	- x2 root ports
 various lane configurations possible ¹ 	- various lane configurations possible ¹



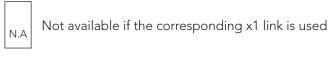

For the PCIe mapping, see sections 5.1.1.1 "SP4 PCIe Routing" and 5.1.1.2 "SP4r2 PCIe Routing".

² Some variants have different configurations. See section 1.2 "Options Information" for more information.

5.1.1.1 SP4 PCle Routing



¹ MAPPING INSTRUCTIONS:


- All PHY lane grouping supports only PCle protocol
- Any grouping of 16 lanes supports maximum of eight separate links
- Any eight lane subset of 16-lane grouping supports maximum of seven links
- All PCIe links subset of 16-lane grouping must be alligned in their natural bit boundaries (Lanes 0-7 and 8-15 for x8 links; lanes 0-3, 4-7, 8-11, 12-15 for x4 links and so on)

5.1.1.2 SP4r2 PCle Routing

¹ MAPPING INSTRUCTIONS:

- All PHY lane groupings except groupings in bucket 2 support only PCIe protocol
- Any grouping of 16 lanes supports maximum of eight separate links
- Any eight lane subset of 16-lane grouping supports maximum of seven links
- All PCIe links subset of 16-lane grouping must be alligned in their natural bit boundaries (Lanes 0-7 and 8-15 for x8 links; lanes 0-3, 4-7, 8-11, 12-15 for x4 links and so on)

5.1.2 SATA

Table 11 SATA Features

Rows A–B	Rows C–D
Two SATA interfaces with support for	None
- SATA Gen 3 specification with up to 6.0 Gbps transfer rate	
- independent DMA operation	
- AHCI mode only	

5.1.3 Gigabit Ethernet

Table 12 Gigabit Ethernet Features

Rows A–B	Rows C–D		
One 1 GbE ¹ interface. Supports:	our 10 GbE ^{2,3} LAN controllers . Supports:		
- MDI interface	- 10GBASE-KR backplane interfaces		
- full-duplex operation at 10/100/1000 Mbps	- full-duplex operation at all supported speeds		
 half-duplex operation at 10/100 Mbps 			
- IEEE 802.3x flow control specification			
- wake on LAN			

- ^{1.} On SP4r2 variants, COM Express PCIe lane 13 is routed to 1 gigabit Ethernet controller by default. PCIe lanes 12 and 13 are not available (requires assembly option) if 1 GbE is supported.
- ^{2.} On SP4r2 variants, COM Express PCIe lanes 8-11 are routed to four 10 GbE controllers by default. PCIe lanes lanes 8-11 are not available (requires assembly option) if four 10 GbE are supported.
- 3. Not supported in Windows Operating System

5.1.4 USB Interface

Table 13 USB Features

Rows A–B	Rows C–D
Four USB 2.0 ports: - ports 0-3 can be combined with USB SuperSpeed signals to create USB 3.0 ports	Four USB 3.0 SuperSpeed Tx/Rx differential signals: - each port requires corresponding USB 2.0 differential pairs
 supports data transfers up to 480 Mbps supports USB 1.x and USB 2.0 compliant devices 	- supports data transfers up to 5 Gbps

5.1.5 General Purpose Serial Interface (UART)

Table 14 UART Features

Rows A–B	Rows C–D
Two UART interfaces. Supports:	None
 low, full and high speed modes 	
- programmable baud rates from 2400 bps up to 115200 bps	
- legacy mode	

Hardware handshake and flow control are not supported.

5.1.6 LPC Bus

The conga-B7E3 offers the LPC bus through the SoC. The congatec Board Controller is connected to the LPC bus.

The LPC bus supports one DMA device.

5.1.7 I²C

The I²C bus is implemented through the congatec Board Controller, and accessed through the congatec CGOS driver and API. The controller provides a fast-mode multi-master I²C bus that has the maximum bandwidth.

5.1.8 SPI

The conga-B7E3 offers the SPI bus for SPI-compatible flash devices. By integrating an off-module flash device (BIOS) on the carrier board, you can boot the conga-B7E3 from the carrier board. This is especially useful when evaluating a customized BIOS.

The Infineon SLB9670_VQ2.0 TPM 2.0 is also connected to the SPI bus.

5.1.9 SMBus

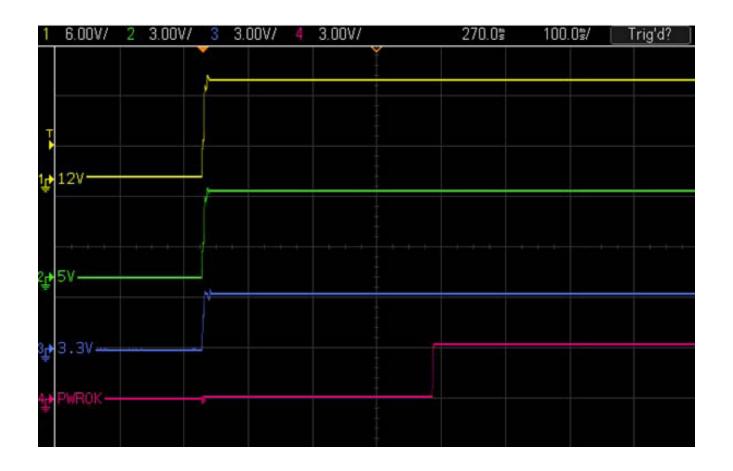
The conga-B7E3 offers the SM bus for communicating and managing system devices such as thermal sensors, PCIe devices, RAM's serial presence detect.

Make sure the address space of the carrier board SM bus devices does not overlap with the address space of the module devices. For more information, see the COM Express Specification.

5.1.10 GPIOs

The conga-B7E3 offers four General Purpose Input signals and four General Purpose Output signals on the A–B connector.

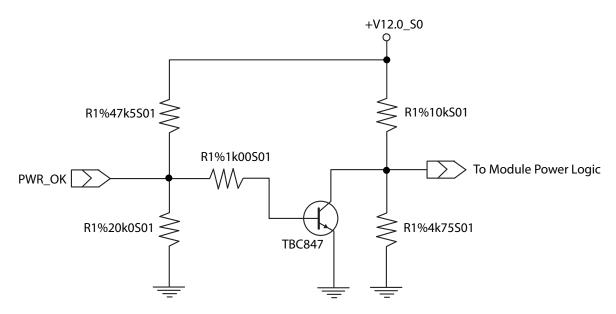
5.1.11 Power Control


PWR OK

Power OK from main power supply or carrier board voltage regulator circuitry. A high value indicates that the power is good and the module can start its onboard power sequencing.

Carrier board hardware must drive this signal low until all power rails and clocks are stable. Releasing PWR_OK too early or not driving it low at all can cause numerous boot up problems. It is a good design practice to delay the PWR_OK signal a little (typically 100ms) after all carrier board power rails are up, to ensure a stable system.

A sample screenshot is shown below:



The module is kept in reset as long as the PWR_OK is driven by carrier board hardware.

The conga-B7E3 PWR_OK input circuitry is implemented as shown below:

The voltage divider ensures the input complies with 3.3 V CMOS characteristic. It also makes it possible to use the module on carrier board designs that do not use the PWR_OK signal. Although the PWR_OK input is not mandatory for the onboard power-up sequencing, it is strongly recommended that the carrier board hardware drives the signal low until it is safe to let the module boot-up.

When considering the above shown voltage divider circuitry and the transistor stage, the voltage measured at the PWR_OK input pin may be only around 0.8 V when the 12 V is applied to the module. Actively driving PWR_OK high is compliant to the COM Express specification but this can cause back driving. Therefore, congatec recommends driving the PWR_OK low to keep the module in reset and tri-state PWR_OK when the carrier board hardware is ready to boot.

The three typical usage scenarios for a carrier board design are:

- Connect PWR_OK to the "power good" signal of an ATX type power supply.
- Connect PWR_OK to the last voltage regulator in the chain on the carrier board.
- Simply pull PWR_OK with a 1 k resistor to the carrier board 3.3 V power rail.

- 1. With this solution, make sure that before the 3.3 V goes up, all carrier board hardware is fully powered and all clocks are stable.
- 2. The conga-B7E3 supports the controlling of ATX-style power supplies. If you do not use an ATX power supply, do not connect the conga-B7E3 pins SUS_S3/PS_ON, 5V_SB and PWRBTN# on the conga-B7E3.

SUS_S3#

The conga-B7E3 does not support S3 and S4 power states.

PWRBTN#

When using ATX-style power supplies PWRBTN# (pin B12 on the A-B connector) is used to connect to a momentary-contact, active-low debounced push-button input while the other terminal on the push-button must be connected to ground. This signal is internally pulled up to 3V_SB using a 10k resistor. When PWRBTN# is asserted it indicates that an operator wants to turn the power on or off. The response to this signal from the system may vary as a result of modifications made in BIOS settings or by system software.

Standard 12V Power Supply Implementation Guidelines

The 12 volt input power is the sole operational power source for the conga-B7E3. Other required voltages are generated internally on the module using onboard voltage regulators.

When designing a power supply for a conga-B7E3 application, be aware that the system may malfunction when a 12V power supply that produces non-monotonic voltage is used to power the system up. Though this problem is rare, it has been observed in some mobile power supply applications.

The cause of this problem is that some internal circuits on the module (e.g. clock-generator chips) generate their own reset signals when the supply voltage exceeds a certain voltage threshold. A voltage dip after passing this threshold may lead to these circuits becoming confused, thereby resulting in a malfunction.

To ensure this problem does not occur, observe the power supply rise waveform through an oscilloscope, during the power supply qualication phase. This will help to determine if the rise is indeed monotonic and does not have any dips. For more information, see the "Power Supply Design Guide for Desktop Platform Form Factors" document at www.intel.com.

5.1.12 Power Management

ACPI

The conga-B7E3 supports Advanced Configuration and Power Interface (ACPI) specification, revision 5.0 (Errata A). For more information, see section 7.2 "ACPI Suspend Modes and Resume Events".

6 Additional Features

6.1 TPM 2.0

The conga-B7E3 offers a discrete SPI TPM 2.0 (Infineon SLB9670VQ2.0) by default. To use the discrete TPM, ensure that the firmware-based TPM is disabled in the BIOS setup menu via the Advanced -> Platform Trust Technology -> fTPM. Save the changes and exit to complete the system configuration changes.

6.2 congatec Board Controller (cBC)

The conga-B7E3 is equipped with Texas Instruments Tiva™ microcontroller. This onboard microcontroller plays an important role for most of the congatec embedded/industrial PC features.

Some of the embedded features such as system monitoring or the I²C bus from the x86 core architecture are fully isolated. This isolation results in higher performance and reliability, even when the x86 processor is in a low power mode. It also ensures that the congatec embedded feature set is fully compatible amongst all congatec modules.

6.2.1 Board Information

The cBC provides a rich data-set of manufacturing and board information such as serial number, EAN number, hardware and firmware revisions, and so on. It also keeps track of dynamically changing data like runtime meter and boot counter.

6.2.2 General Purpose Input/Output

The conga-B7E3 offers general purpose inputs and outputs for custom system design. These GPIOs are controlled by the cBC.

6.2.3 Watchdog

The conga-B7E3 is equipped with a multi stage watchdog solution that is triggered by software. For more information about the watchdog feature, see the application note AN3 Watchdog.pdf on the congatec GmbH website at www.congatec.com.

The conga-B7E3 module does not support watchdog NMI mode.

6.2.4 I²C Bus

The conga-B7E3 supports I²C bus. Thanks to the I²C host controller in the cBC, the I²C bus is multi-master capable and runs at fast mode.

6.2.5 Power Loss Control

The cBC has full control of the power-up of the module and therefore can be used to specify the behavior of the system after an AC power loss condition. Supported modes are "Always On", "Remain Off" and "Last State".

6.2.6 Fan Control

The conga-B7E3 has additional signals and functions to further improve system management. One of these signals is FAN_PWMOUT, an output signal that allows system fan control using a PWM (Pulse Width Modulation) output. Additionally, the input signal FAN_TACHOIN provides the ability to monitor the system's fan RPMs (revolutions per minute). This signal must receive two pulses per revolution in order to produce an accurate reading. For this reason, a two pulse per revolution fan or similar hardware solution is recommended.

- 1. A four wire fan must be used to generate the correct speed readout.
- 2. For the correct fan control (FAN_PWMOUT, FAN_TACHIN) implementation, see the COM Express Design Guide.

6.3 OEM BIOS Customization

The conga-B7E3 is equipped with congatec Embedded BIOS, which is based on American Megatrends Inc. Aptio UEFI firmware. The congatec Embedded BIOS allows system designers to modify the BIOS. For more information about customizing the congatec Embedded BIOS, refer to the congatec System Utility user's guide CGUTLm1x.pdf on the congatec website at www.congatec.com or contact technical support.

The customization features supported are described below:

6.3.1 OEM Default Settings

This feature allows system designers to create and store their own BIOS default configuration. Customized BIOS development by congatec for OEM default settings is no longer necessary because customers can easily perform this configuration by themselves using the congatec system utility CGUTIL. See congatec application note AN8_Create_OEM_Default_Map.pdf on the congatec website for details on how to add OEM default settings to the congatec Embedded BIOS.

6.3.2 OEM Boot Logo

This feature allows system designers to replace the standard text output displayed during POST with their own BIOS boot logo. Customized BIOS development by congatec for OEM Boot Logo is no longer necessary because customers can easily perform this configuration by themselves using the congatec system utility CGUTIL. See congatec application note AN8_Create_And_Add_Bootlogo.pdf on the congatec website for details on how to add OEM boot logo to the congatec Embedded BIOS.

6.3.3 OEM POST Logo

This feature allows system designers to replace the congatec POST logo displayed in the upper left corner of the screen during BIOS POST with their own BIOS POST logo. Use the congatec system utility CGUTIL 1.5.4 or later to replace/add the OEM POST logo.

6.3.4 OEM BIOS Code/Data

With the congatec embedded BIOS, system designers can add their own code to the BIOS POST process. The congatec Embedded BIOS first calls the OEM code before handing over control to the OS loader.

Except for custom specific code, this feature can also be used to support Windows 10 OEM activation (OA3.0), verb tables for HDA codecs, PCI/PCIe OpROMs, bootloaders, rare graphic modes and Super I/O controller initialization.

The OEM BIOS code of the new UEFI based firmware is called only when the CSM (Compatibility Support Module) is enabled in the BIOS setup menu. Contact congatec technical support for more information on how to add OEM code.

6.3.5 OEM DXE Driver

This feature allows designers to add their own UEFI DXE driver to the congatec embedded BIOS. Contact congatec technical support for more information on how to add an OEM DXE driver.

6.4 congatec Battery Management Interface

To facilitate the development of battery powered mobile systems based on embedded modules, congatec GmbH defined an interface for the exchange of data between a CPU module (using an ACPI operating system) and a Smart Battery system. A system developed according to the congatec Battery Management Interface Specification can provide the battery management functions supported by an ACPI capable operating system (for example, charge state of the battery, information about the battery, alarms/events for certain battery states and so on) without the need for additional modifications to the system BIOS. In addition to the ACPI-Compliant Control Method Battery mentioned above, the latest versions of the conga-B7E3 BIOS and board controller firmware also support LTC1760 battery manager from Linear Technology and a battery only solution (no charger). All three battery solutions are supported on the I2C bus and the SMBus. This gives the system designer more flexibility when choosing the appropriate battery sub-system.

For more information about the supported Battery Management Interface, contact your local congatec sales representative.

6.5 API Support (CGOS)

To benefit from the above mentioned non-industry standard feature set, congatec provides an API that allows application software developers to easily integrate all these features into their code. The CGOS API (congatec Operating System Application Programming Interface) is the congatec proprietary API that is available for all commonly used Operating Systems such as Win64, Linux. The architecture of the CGOS API driver provides the ability to write application software that runs unmodified on all congatec CPU modules. All the hardware related code is contained within the congatec embedded BIOS on the module. See section 1.1 of the CGOS API software developers guide, available on the congatec website.

6.6 Suspend to Ram

The conga-B7E3 does not support Suspend to RAM feature.

7 conga Tech Notes

The conga-B7E3 has some technological features that require additional explanation. The following section will give the reader a better understanding of some of these features.

7.1 AMD®64 Architecture

The AMD64 architecture is a set of x86 architecture extensions that allows the CPU to run 64-bit software required for higher performance applications, while supporting legacy 16-bit and 32-bit applications and operating systems without modification and recompilation. The architecture includes the following features:

- eight additional general-purpose registers (GPRs)
- all GPRs are 64-bit wide
- eight additional YMM/XMM registers
- uniform byte-register addressing for all GPRs
- an instruction prefix accesses the extended registers
- up to 64-bit virtual address
- 64-bit intruction pointer
- instruction pointer relative data-addressing mode
- flat address space

Platforms with AMD® 64 can be run in two ways:

- 1. **Legacy Mode:** This mode supports 32-bit operating system and 32-bit applications. In this mode no software changes are required, however the benefits of AMD® 64 are not utilized. The legacy mode consists of three submodes—protected mode, virtual-8086 mode and real mode.
- 2. **Long Mode:** The long mode requires a 64-bit Operating System. It consists of 64-bit mode and compatibility mode (for 32-bit applications).
 - The 64-bit mode provides full support for 64-bit system software and applications. It also requires the recompilation of existing application binaries to 64-bit mode.
 - The compatibility mode allows 64-bit operating systems to run existing 16-bit or 32-bit x86 applications without recompilation.

7.1.1 AMD® Virtualization Technology

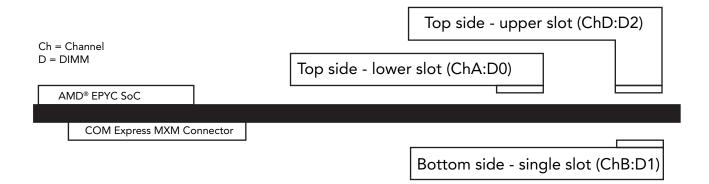
AMD® Virtualization Technology (AMD® VT) makes a single system appear as multiple independent systems to software. With this technology, multiple, independent operating systems can run simultaneously on a single system.

congatec supports only RTS Hypervisor. For more information, contact congatec technical support.

7.2 ACPI Suspend Modes and Resume Events

The table below lists the events that wake the system from S5.

Table 15 Wake Events


Wake Event	Conditions/Remarks
Power Button	Wakes unconditionally from S5
Onboard LAN Event	Device driver must be configured for Wake On LAN support
PCI Express WAKE#	Wakes unconditionally from S5
PME#	Activate the wake up capabilities of a PCI device using Windows Device Manager configuration options for this device or enable
	'Resume On PME#' in the Power setup menu
RTC Alarm	Activate and configure Resume On RTC Alarm in the Power setup menu. Wakes unconditionally from S5
Watchdog Power Button Event	Wakes unconditionally from S5

The conga-B7E3 does not support S3 and S4.

7.3 DIMM Configuration

The SoC featured on the conga-B7E3 supports ECC and non-ECC DDR4 memory modules, up to 2666 MT/s. The diagram below shows the location of the memory slots on the conga-B7E3.

8 Signal Descriptions and Pinout Tables

The following section describes the signals found on the conga-B7E3. The pinout of the module complies with COM Express Type 7, rev. 3.0.

The table below describes the terminology used in this section. The PU/PD column indicates if a COM Express™ module pull-up or pull-down resistor has been used. If the field entry area in this column for the signal is empty, then no pull-up or pull-down resistor has been implemented by congatec.

The "#" symbol at the end of the signal name indicates that the active or asserted state occurs when the signal is at a low voltage level. When "#" is not present, the signal is asserted when at a high voltage level.

The Signal Description tables do not list internal pull-ups or pull-downs implemented by the chip vendors; only pull-ups or pull-downs implemented by congatec are listed. For information about the internal pull-ups or pull-downs implemented by the chip vendors, refer to the respective chip's datasheet.

Table 16 Terminology Descriptions

Term	Description
PU	congatec implemented pull-up resistor
PD	congatec implemented pull-down resistor
T	Higher voltage tolerance
I/O 3.3V	Bi-directional signal 3.3V tolerant
I/O 5V	Bi-directional signal 5V tolerant
I 3.3V	Input 3.3V tolerant
I 5V	Input 5V tolerant
I/O 3.3VSB	Input 3.3V tolerant; active in standby state
O 3.3V	Output 3.3V signal level
O 5V	Output 5V signal level
OD	Open drain output
Р	Power Input/Output
DDC	Display Data Channel
PCIE	In compliance with PCI Express Base Specification, Revision 2.0 and 3.0
SATA	In compliance with Serial ATA specification Revision 2.6 and 3.0.
REF	Reference voltage output. May be sourced from a module power plane.
KR	10GBASE-KR compatible signal
PDS	Pull-down strap. A module output pin that is either tied to GND or is not connected. Used to signal module capabilities (pinout type) to the Carrier Board.

8.1 Connector Signal Descriptions

Table 17 Connector A–B Pinout

Pin	Row A	Pin	Row B	Pin	Row A	Pin	Row B
A1	GND (FIXED)	B1	GND (FIXED)	A56	PCIE_TX4-	B56	PCIE_RX4-
A2	GBE0_MDI3-	B2	GBE0_ACT#	A57	GND	B57	GPO2
A3	GBE0_MDI3+	В3	LPC_FRAME#	A58	PCIE_TX3+	B58	PCIE_RX3+
A4	GBE0_LINK100#	В4	LPC_AD0	A59	PCIE_TX3-	B59	PCIE_RX3-
A5	GBE0_LINK1000#	B5	LPC_AD1	A60	GND (FIXED)	B60	GND (FIXED)
A6	GBE0_MDI2-	В6	LPC_AD2	A61	PCIE_TX2+	B61	PCIE_RX2+
A7	GBE0_MDI2+	В7	LPC_AD3	A62	PCIE_TX2-	B62	PCIE_RX2-
A8	GBE0_LINK#	В8	LPC_DRQ0#	A63	GPI1	B63	GPO3
A9	GBE0_MDI1-	В9	LPC_DRQ1# 1	A64	PCIE_TX1+	B64	PCIE_RX1+
A10	GBE0_MDI1+	B10	LPC_CLK	A65	PCIE_TX1-	B65	PCIE_RX1-
A11	GND(FIXED)	B11	GND (FIXED)	A66	GND	B66	WAKE0#
A12	GBE0_MDI0-	B12	PWRBTN#	A67	GPI2	B67	WAKE1# ²
A13	GBE0_MDI0+	B13	SMB_CK	A68	PCIE_TX0+	B68	PCIE_RX0+
A14	GBE0_CTREF ¹	B14	SMB_DAT	A69	PCIE_TX0-	B69	PCIE_RX0-
A15	SUS_S3#	B15	SMB_ALERT#	A70	GND (FIXED)	B70	GND (FIXED)
A16	SATA0_TX+	B16	SATA1_TX+	A71	PCIE_TX8+	B71	PCIE_RX8+
A17	SATA0_TX-	B17	SATA1_TX-	A72	PCIE_TX8-	B72	PCIE_RX8-
A18	SUS_S4#	B18	SUS_STAT#	A73	GND	B73	GND
A19	SATA0_RX+	B19	SATA1_RX+	A74	PCIE_TX9+	B74	PCIE_RX9+
A20	SATA0_RX-	B20	SATA1_RX-	A75	PCIE_TX9-	B75	PCIE_RX9-
A21	GND (FIXED)	B21	GND (FIXED)	A76	GND	B76	GND
A22	PCIE_TX15+	B22	PCIE_RX15+	A77	PCIE_TX10+	B77	PCIE_RX10+
A23	PCIE_TX15-	B23	PCIE_RX15-	A78	PCIE_TX10-	B78	PCIE_RX10-
A24	SUS_S5#	B24	PWR_OK	A79	GND	B79	GND
A25	PCIE_TX14+	B25	PCIE_RX14+	A80	GND (FIXED)	B80	GND (FIXED)
A26	PCIE_TX14-	B26	PCIE_RX14-	A81	PCIE_TX11+	B81	PCIE_RX11+
A27	BATLOW#	B27	WDT	A82	PCIE_TX11-	B82	PCIE_RX11-
A28	(S)ATA_ACT#	B28	RSVD ¹	A83	GND	B83	GND
A29	RSVD ¹	B29	RSVD ¹	A84	NCSI_TX_EN	B84	VCC_5V_SBY
A30	RSVD ¹	B30	RSVD ¹	A85	GPI3	B85	VCC_5V_SBY

Pin	Row A	Pin	Row B	Pin	Row A	Pin	Row B
A31	GND (FIXED)	B31	GND (FIXED)	A86	RSVD ¹	B86	VCC_5V_SBY
A32	RSVD ¹	B32	SPKR ²	A87	RSVD ¹	B87	VCC_5V_SBY
A33	RSVD ¹	B33	I2C_CK	A88	PCIE_CK_REF+	B88	BIOS_DIS1#
A34	BIOS_DISO# ²	B34	I2C_DAT	A89	PCIE_CK_REF-	B89	NCSI_RX_ER ²
A35	THRMTRIP#	B35	THRM#	A90	GND (FIXED)	B90	GND (FIXED)
A36	PCIE_TX13+	B36	PCIE_RX13+	A91	SPI_POWER	B91	NCSI_CLK_IN
A37	PCIE_TX13-	B37	PCIE_RX13-	A92	SPI_MISO	B92	NCSI_RXD1
A38	GND	B38	GND	A93	GPO0	B93	NCSI_RXD0
A39	PCIE_TX12+	B39	PCIE_RX12+	A94	SPI_CLK	B94	NCSI_CRS_DV
A40	PCIE_TX12-	B40	PCIE_RX12-	A95	SPI_MOSI	B95	NCSI_TXD1
A41	GND (FIXED)	B41	GND (FIXED)	A96	TPM_PP	B96	NCSI_TXD0
A42	USB2-	B42	USB3-	A97	TYPE10# 1	B97	SPI_CS#
A43	USB2+	B43	USB3+	A98	SERO_TX	B98	NCSI_ARB_IN
A44	USB_2_3_OC#	B44	USB_0_1_OC#	A99	SERO_RX	B99	NCSI_ARB_OUT
A45	USB0-	B45	USB1-	A100	GND (FIXED)	B100	GND (FIXED)
A46	USB0+	B46	USB1+	A101	SER1_TX	B101	FAN_PWMOUT
A47	VCC_RTC	B47	ESPI_EN# ¹	A102	SER1_RX	B102	FAN_TACHIN
A48	RSVD ¹	B48	USB0_HOST_PRSNT ²	A103	LID#	B103	SLEEP#
A49	GBE0_SDP	B49	SYS_RESET#	A104	VCC_12V	B104	VCC_12V
A50	LPC_SERIRQ	B50	CB_RESET#	A105	VCC_12V	B105	VCC_12V
A51	GND (FIXED)	B51	GND (FIXED)	A106	VCC_12V	B106	VCC_12V
A52	PCIE_TX5+	B52	PCIE_RX5+	A107	VCC_12V	B107	VCC_12V
A53	PCIE_TX5-	B53	PCIE_RX5-	A108	VCC_12V	B108	VCC_12V
A54	GPI0	B54	GPO1	A109	VCC_12V	B109	VCC_12V
A55	PCIE_TX4+	B55	PCIE_RX4+	A110	GND (FIXED)	B110	GND (FIXED)

- 1. Not connected.
- 2. Not supported

Table 18 Connector C–D Pinout

Pin	Row C	Pin	Row D	Pin	Row C	Pin	Row D
C1	GND (FIXED)	D1	GND (FIXED)	C56	PCIE_RX17-	D56	PCIE_TX17-
C2	GND	D2	GND	C57	TYPE1#	D57	TYPE2#
C3	USB_SSRX0-	D3	USB_SSTX0-	C58	PCIE_RX18+	D58	PCIE_TX18+
C4	USB_SSRX0+	D4	USB_SSTX0+	C59	PCIE_RX18-	D59	PCIE_TX18-
C5	GND	D5	GND	C60	GND (FIXED)	D60	GND (FIXED)
C6	USB_SSRX1-	D6	USB_SSTX1-	C61	PCIE_RX19+	D61	PCIE_TX19+
C7	USB_SSRX1+	D7	USB_SSTX1+	C62	PCIE_RX19-	D62	PCIE_TX19-
C8	GND	D8	GND	C63	RSVD	D63	RSVD ¹
C9	USB_SSRX2-	D9	USB_SSTX2-	C64	RSVD	D64	RSVD ¹
C10	USB_SSRX2+	D10	USB_SSTX2+	C65	PCIE_RX20+	D65	PCIE_TX20+
C11	GND(FIXED)	D11	GND (FIXED)	C66	PCIE_RX20-	D66	PCIE_TX20-
C12	USB_SSRX3-	D12	USB_SSTX3-	C67	RAPID_SHUTDOWN ²	D67	GND
C13	USB_SSRX3+	D13	USB_SSTX3+	C68	PCIE_RX21+	D68	PCIE_TX21+
C14	GND	D14	GND	C69	PCIE_RX21-	D69	PCIE_TX21-
C15	10G_PHY_MDC_SCL3 ²	D15	10G_PHY_MDIO_SDA3 ²	C70	GND (FIXED)	D70	GND (FIXED)
C16	10G_PHY_MDC_SCL2	D16	10G_PHY_MDIO_SDA2	C71	PCIE_RX22+	D71	PCIE_TX22+
C17	10G_SDP2 ²	D17	10G_SDP3 ²	C72	PCIE_RX22-	D72	PCIE_TX22-
C18	GND	D18	GND	C73	GND	D73	GND
C19	PCIE_RX6+	D19	PCIE_TX6+	C74	PCIE_RX23+	D74	PCIE_TX23+
C20	PCIE_RX6-	D20	PCIE_TX6-	C75	PCIE_RX23-	D75	PCIE_TX23-
C21	GND (FIXED)	D21	GND (FIXED)	C76	GND	D76	GND
C22	PCIE_RX7+	D22	PCIE_TX7+	C77	RSVD	D77	RSVD ¹
C23	PCIE_RX7-	D23	PCIE_TX7-	C78	PCIE_RX24+	D78	PCIE_TX24+
C24	10G_INT2	D24	10G_INT3	C79	PCIE_RX24-	D79	PCIE_TX24-
C25	GND	D25	GND	C80	GND (FIXED)	D80	GND (FIXED)
C26	10G_KR_RX3+	D26	10G_KR_TX3+	C81	PCIE_RX25+	D81	PCIE_TX25+
C27	10G_KR_RX3-	D27	10G_KR_TX3-	C82	PCIE_RX25-	D82	PCIE_TX25-
C28	GND	D28	GND	C83	RSVD	D83	RSVD ¹
C29	10G_KR_RX2+	D29	10G_KR_TX2+	C84	GND	D84	GND
C30	10G_KR_RX2-	D30	10G_KR_TX2-	C85	PCIE_RX26+	D85	PCIE_TX26+
C31	GND (FIXED)	D31	GND (FIXED)	C86	PCIE_RX26-	D86	PCIE_TX26-
C32	10G_SFP_SDA3	D32	10G_SFP_SCL3	C87	GND	D87	GND

Pin	Row C	Pin	Row D	Pin	Row C	Pin	Row D
C33	10G_SFP_SDA2	D33	10G_SFP_SCL2	C88	PCIE_RX27+	D88	PCIE_TX27+
C34	10G_PHY_RST_23	D34	10G_PHY_CAP_23 ²	C89	PCIE_RX27-	D89	PCIE_TX27-
C35	10G_PHY_RST_01	D35	10G_PHY_CAP_01 ²	C90	GND (FIXED)	D90	GND (FIXED)
C36	10G_LED_SDA ²	D36	RSVD ¹	C91	PCIE_RX28+	D91	PCIE_TX28+
C37	10G_LED_SCL ²	D37	RSVD ¹	C92	PCIE_RX28-	D92	PCIE_TX28-
C38	10G_SFP_SDA1	D38	10G_SFP_SCL1	C93	GND	D93	GND
C39	10G_SFP_SDA0	D39	10G_SFP_SCL0	C94	PCIE_RX29+	D94	PCIE_TX29+
C40	10G_SDP0 ²	D40	10G_SDP1 ²	C95	PCIE_RX29-	D95	PCIE_TX29-
C41	GND (FIXED)	D41	GND (FIXED)	C96	GND	D96	GND
C42	10G_KR_RX1+	D42	10G_KR_TX1+	C97	RSVD	D97	RSVD ¹
C43	10G_KR_RX1-	D43	10G_KR_TX1-	C98	PCIE_RX30+	D98	PCIE_TX30+
C44	GND	D44	GND	C99	PCIE_RX30-	D99	PCIE_TX30-
C45	10G_PHY_MDC_SCL1 ²	D45	10G_PHY_MDIO_SDA1 ²	C100	GND (FIXED)	D100	GND (FIXED)
C46	10G_PHY_MDC_SCL0	D46	10G_PHY_MDIO_SDA0	C101	PCIE_RX31+	D101	PCIE_TX31+
C47	10G_INT0	D47	10G_INT1	C102	PCIE_RX31-	D102	PCIE_TX31-
C48	GND	D48	GND	C103	GND	D103	GND
C49	10G_KR_RX0+	D49	10G_KR_TX0+	C104	VCC_12V	D104	VCC_12V
C50	10G_KR_RX0-	D50	10G_KR_TX0-	C105	VCC_12V	D105	VCC_12V
C51	GND (FIXED)	D51	GND(FIXED)	C106	VCC_12V	D106	VCC_12V
C52	PCIE_RX16+	D52	PCIE_TX16+	C107	VCC_12V	D107	VCC_12V
C53	PCIE_RX16-	D53	PCIE_TX16-	C108	VCC_12V	D108	VCC_12V
C54	TYPE0#	D54	RSVD ¹	C109	VCC_12V	D109	VCC_12V
C55	PCIE_RX17+	D55	PCIE_TX17+	C110	GND (FIXED)	D110	GND (FIXED)

- 1. Not connected.
- 2. Not supported.

Table 19 PCI Express Signal Descriptions (general purpose)

Signal	Pin #	Description	I/O	PU/PD	Comment		
PCIE_TX0+	A68	PCI Express Transmit Output Differential Pairs 0	O PCIE				
PCIE_TX0-	A69						
PCIE_RX0+	B68	PCI Express Receive Input Differential Pairs 0	I PCIE				
PCIE_RX0-	B69						
PCIE_TX1+	A64	PCI Express Transmit Output Differential Pairs 1	O PCIE				
PCIE_TX1-	A65						
PCIE_RX1+	B64	PCI Express Receive Input Differential Pairs 1	I PCIE				
PCIE_RX1-	B65						
PCIE_TX2+	A61	PCI Express Transmit Output Differential Pairs 2	O PCIE				
PCIE_TX2-	A62						
PCIE_RX2+	B61	PCI Express Receive Input Differential Pairs 2	I PCIE				
PCIE_RX2-	B62						
PCIE_TX3+	A58	PCI Express Transmit Output Differential Pairs 3	O PCIE				
PCIE_TX3-	A59						
PCIE_RX3+	B58	PCI Express Receive Input Differential Pairs 3	I PCIE				
PCIE_RX3-	B59						
PCIE_TX4+	A55	PCI Express Transmit Output Differential Pairs 4	O PCIE		Shared with BMC on congatec carrier board (not available if		
PCIE_TX4-	A56				congatec carrier board BMC is enabled)		
PCIE_RX4+	B55	PCI Express Receive Input Differential Pairs 4	I PCIE				
PCIE_RX4-	B56						
PCIE_TX5+	A52	PCI Express Transmit Output Differential Pairs 5	O PCIE		Not available if congatec carrier board BMC is enabled		
PCIE_TX5-	A53						
PCIE_RX5+	B52	PCI Express Receive Input Differential Pairs 5	I PCIE				
PCIE_RX5-	B53						
PCIE_TX6+	D19	PCI Express Transmit Output Differential Pairs 6	O PCIE				
PCIE_TX6-	D20						
PCIE_RX6+	C19	PCI Express Receive Input Differential Pairs 6	I PCIE				
PCIE_RX6-	C20						
PCIE_TX7+	D22	PCI Express Transmit Output Differential Pairs 7	O PCIE				
PCIE_TX7-	D23						
PCIE_RX7+	C22	PCI Express Receive Input Differential Pairs 7	I PCIE				
PCIE_RX7-	C23						
PCIE_TX8+	A71	PCI Express Transmit Output Differential Pairs 8	O PCIE		Supported on SP4 variants by default (BOM option on SP4r2		
PCIE_TX8-	A72				variants)		
PCIE_RX8+	B71	PCI Express Receive Input Differential Pairs 8	I PCIE				
PCIE_RX8-	B72						
PCIE_TX9+	A74	PCI Express Transmit Output Differential Pairs 9	O PCIE		Supported on SP4 variants by default (BOM option on SP4r2		
PCIE_TX9-	A75	· · · · · · · · · · · · · · · · · · ·			variants)		
PCIE_RX9+	B74	PCI Express Receive Input Differential Pairs 9	I PCIE				
PCIE_RX9-	B75						

PCIE_TX10+	A77	PCI Express Transmit Output Differential Pairs 10	O PCIE	Supported on SP4 variants by default (BOM option on SP4r2
PCIE_TX10+	A77	FCI Express Transmit Output Differential Fairs 10	OFCIE	variants)
PCIE_RX10+	B77	PCI Express Receive Input Differential Pairs 10	I PCIE	Variation
PCIE_RX10-	B78	T of Express Receive input Billerential Falls To		
PCIE_TX11+	A81	PCI Express Transmit Output Differential Pairs 11	O PCIE	Supported on SP4 variants by default (BOM option on SP4r2
PCIE_TX11-	A82			variants)
PCIE_RX11+	B81	PCI Express Receive Input Differential Pairs 11	I PCIE	
PCIE_RX11-	B82			
PCIE_TX12+	A39	PCI Express Transmit Output Differential Pairs 12	O PCIE	Supported on SP4 variants by default (BOM option on SP4r2
PCIE_TX12-	A40			variants)
PCIE_RX12+	B39	PCI Express Receive Input Differential Pairs 12	I PCIE	
PCIE_RX12-	B40			
PCIE_TX13+	A36	PCI Express Transmit Output Differential Pairs 13	O PCIE	Supported on SP4 variants by default (BOM option on SP4r2
PCIE_TX13-	A37			variants)
PCIE_RX13+	B36	PCI Express Receive Input Differential Pairs 13	I PCIE	
PCIE_RX13-	B37			
PCIE_TX14+	A25	PCI Express Transmit Output Differential Pairs 14	O PCIE	Supported on SP4 variants by default (BOM option on SP4r2
PCIE_TX14-	A26			variants)
PCIE_RX14+	B25	PCI Express Receive Input Differential Pairs 14	I PCIE	
PCIE_RX14-	B26			
PCIE_TX15+	A22	PCI Express Transmit Output Differential Pairs 15	O PCIE	Supported on SP4 variants by default (BOM option on SP4r2
PCIE_TX15-	A23			variants)
PCIE_RX15+	B22	PCI Express Receive Input Differential Pairs 15	I PCIE	
PCIE_RX15-	B23		0.00.5	
PCIE_TX16+	D52	PCI Express Transmit Output Differential Pairs 16	O PCIE	
PCIE_TX16-	D53	DOLE D : 1 . D''' .: 1D : 4/	I DOIE	
PCIE_RX16+	C52	PCI Express Receive Input Differential Pairs 16	I PCIE	
PCIE_RX16-	C53	DOLE T ' O D' 17	O DOIE	
PCIE_TX17+ PCIE_TX17-	D55	PCI Express Transmit Output Differential Pairs 17	O PCIE	
PCIE_RX17+	C55	PCI Express Receive Input Differential Pairs 17	I PCIE	
PCIE_RX17+ PCIE_RX17-	C56	FCI Express Receive input Differential Fairs 17	IFCIE	
PCIE_TX18+	D58	PCI Express Transmit Output Differential Pairs 18	O PCIE	
PCIE_TX18-	D59	T CI Express Transmit Output Differential Fails To	OTCIL	
PCIE_RX18+	C58	PCI Express Receive Input Differential Pairs 18	I PCIE	
PCIE_RX18-	C59	T CI Express Receive input Differential Fairs 10		
PCIE_TX19+	D61	PCI Express Transmit Output Differential Pairs 19	O PCIE	
PCIE_TX19-	D62	. S. Express transmit each at Billiotetta in a 17		
PCIE_RX19+	C61	PCI Express Receive Input Differential Pairs 19	I PCIE	
PCIE_RX19-	C62			
PCIE_TX20+	D65	PCI Express Transmit Output Differential Pairs 20	O PCIE	
PCIE_TX20-	D66	2 2		
PCIE_RX20+	C65	PCI Express Receive Input Differential Pairs 20	I PCIE	
PCIE_RX20-	C66	·		

DOLE TYOU	D/0	DOLE T '.O. D' ID'. OA	O DOLE	
PCIE_TX21+	D68	PCI Express Transmit Output Differential Pairs 21	O PCIE	
PCIE_TX21-	D69			
PCIE_RX21+	C68	PCI Express Receive Input Differential Pairs 21	I PCIE	
PCIE_RX21-	C69			
PCIE_TX22+	D71	PCI Express Transmit Output Differential Pairs 22	O PCIE	
PCIE_TX22-	D72			
PCIE_RX22+	C71	PCI Express Receive Input Differential Pairs 22	I PCIE	
PCIE_RX22-	C72			
PCIE_TX23+	D74	PCI Express Transmit Output Differential Pairs 23	O PCIE	
PCIE_TX23-	D75			
PCIE_RX23+	C74	PCI Express Receive Input Differential Pairs 23	I PCIE	
PCIE_RX23-	C75	T of Express Receive input Billierential Falls 20	11 0.2	
PCIE_TX24+	D78	PCI Express Transmit Output Differential Pairs 24	O PCIE	
PCIE_TX24-	D79	T CI Express Transmit Output Differential Falls 24	OTCIL	
PCIE_RX24+	C78	PCI Express Receive Input Differential Pairs 24	I PCIE	
PCIE_RX24+	C76	r Ci Express Receive input Differential Fairs 24	IFCIE	
		DOLE T :: 0 : 10: 10: 0E	O DOLE	
PCIE_TX25+	D81	PCI Express Transmit Output Differential Pairs 25	O PCIE	
PCIE_TX25-	D82		_	
PCIE_RX25+	C81	PCI Express Receive Input Differential Pairs 25	I PCIE	
PCIE_RX25-	C82			
PCIE_TX26+	D85	PCI Express Transmit Output Differential Pairs 26	O PCIE	
PCIE_TX26-	D86			
PCIE_RX26+	C85	PCI Express Receive Input Differential Pairs 26	I PCIE	
PCIE_RX26-	C86			
PCIE_TX27+	D88	PCI Express Transmit Output Differential Pairs 27	O PCIE	
PCIE_TX27-	D89			
PCIE_RX27+	C88	PCI Express Receive Input Differential Pairs 27	I PCIE	
PCIE_RX27-	C89			
PCIE_TX28+	D91	PCI Express Transmit Output Differential Pairs 28	O PCIE	
PCIE_TX28-	D92	Tot Express transmit output Emerendant and 20	0 1 0.2	
PCIE_RX28+	C91	PCI Express Receive Input Differential Pairs 28	I PCIE	
PCIE_RX28-	C92	T GI Express Receive Input Billerential Falls 20	ITT CIL	
PCIE_TX29+	D94	PCI Express Transmit Output Differential Pairs 29	O PCIE	
PCIE_TX29+	D94 D95	FCI Express Transmit Output Differential Fairs 29	OFCIE	
		DOLE D : 1 'D.(('. D : 00	I DCIE	
PCIE_RX29+	C94	PCI Express Receive Input Differential Pairs 29	I PCIE	
PCIE_RX29-	C95		0.50/5	
PCIE_TX30+	D98	PCI Express Transmit Output Differential Pairs 30	O PCIE	
PCIE_TX30-	D99			
PCIE_RX30+	C98	PCI Express Receive Input Differential Pairs 30	I PCIE	
PCIE_RX30-	C99			
PCIE_TX31+	D101	PCI Express Transmit Output Differential Pairs 31	O PCIE	
PCIE_TX31-	D102			
PCIE_RX31+	C101	PCI Express Receive Input Differential Pairs 31	I PCIE	
PCIE_RX31-	C102			

Table 20 SATA Signal Descriptions

Pin #	Description	I/O	PU/PD	Comment
A19	Serial ATA channel 0, Receive Input differential pair	I SATA		Supports Serial ATA specification, Revision 3.0
A20				
A16	Serial ATA channel 0, Transmit Output differential pair	O SATA		Supports Serial ATA specification, Revision 3.0
A17				
B19	Serial ATA channel 1, Receive Input differential pair	I SATA		Supports Serial ATA specification, Revision 3.0
B20				
B16	Serial ATA channel 1, Transmit Output differential pair	O SATA		Supports Serial ATA specification, Revision 3.0
B17				
A28	ATA (parallel and serial) or SAS activity indicator, active low	I/O 3.3V	PU 10K	Indicates NVMe activity on variants with SP4 BGA socket. Note: Not supported on variants with SP4r2 BGA socket
	A19 A20 A16 A17 B19 B20 B16 B17	A20 A16 Serial ATA channel 0, Transmit Output differential pair A17 B19 Serial ATA channel 1, Receive Input differential pair B20 B16 Serial ATA channel 1, Transmit Output differential pair B17	A19 Serial ATA channel 0, Receive Input differential pair A20 I SATA A16 Serial ATA channel 0, Transmit Output differential pair B19 Serial ATA channel 1, Receive Input differential pair B20 I SATA B16 Serial ATA channel 1, Transmit Output differential pair B17 O SATA O SATA	A19 Serial ATA channel 0, Receive Input differential pair A20 I SATA A16 Serial ATA channel 0, Transmit Output differential pair A17 O SATA B19 Serial ATA channel 1, Receive Input differential pair B20 I SATA B16 Serial ATA channel 1, Transmit Output differential pair B17 O SATA O SATA

Table 21 Gigabit Ethernet Signal Descriptions

Gigabit Ethernet	Pin #	Description			I/O	PU/PD	Comment	
GBE0_MDI0+	A13			ial Pairs 0, 1, 2, 3. The MDI can operate	1/0			
GBE0_MDI0-	A12	in 1000, 100, and	10Mbit/sec modes. Some	pairs are unused in some	e modes according to the following:	Analog		
GBE0_MDI1+	A10		1000BASE-T	100BASE-TX	10BASE-T			
GBE0_MDI1-	A9	MDI[0]+/-	B1 DA+/-	TX+/-	TX+/-	1		
GBE0_MDI2+ GBE0 MDI2-	A7 A6	MDI[1]+/-	B1_DB+/-	RX+/-	RX+/-			
GBE0_MDI3+	A3	MDI[2]+/-	B1_DC+/-					
GBE0_MDI3-	A2	MDI[3]+/-	B1_DD+/-					
GBE0_ACT#	B2	Gigabit Ethernet	Controller 0 activity indica	tor, active low		OD 3.3V		
GBE0_LINK#	A8	Gigabit Ethernet	Controller 0 link indicator,	active low		OD 3.3V		
GBE0_LINK100#	A4	Gigabit Ethernet	Controller 0 100Mbit/sec	ink indicator, active low		OD 3.3V		
GBE0_LINK1000#	A5	Gigabit Ethernet	Controller 0 1000Mbit/sec	link indicator, active low		OD 3.3V		
GBE0_CTREF	A14	determined by the reference voltage	e for Carrier Board Ethern ne requirements of the mo e output shall be current lind d, the current shall be limi	REF		Not connected		
GBE0_SDP	A49	Gigabit Ethernet pps signal	Controller 0 Software-Def	inable Pin. Can also be u	sed for IEEE1588 support such as a 1	I/O 3.3VSB	PU 10K	

Table 22 NC-SI Signal Descriptions

Signal	Pin #	Description	I/O	PU/PD	Comment
NCSI_CLK_IN	B91	NC-SI Clock reference for receive, transmit, and control interface	I 3.3V	PD 10K	
NCSI_RXD0	B93	NC-SI Receive Data (from NC to BMC)	O 3.3V	PU 10K	
NCSI_RXD1	B92				
NCSI_TXD0	B96	NC-SI Transmit Data (from BMC to NC)	I 3.3V	PU 10K	
NCSI_TXD1	B95				
NCSI_CRS_DV	B94	NC-SI Carrier Sense/Receive Data Valid to MC, indicating that the transmitted data from NC to BMC is valid	O 3.3V	PD 10K	
NCSI_TX_EN	A84	NC-SI Transmit enable	I 3.3V	PD 10K	
NCSI_RX_ER	B89	NC-SI Receive error	O 3.3V		Not supported
NCSI_ARB_IN	B98	NC-SI hardware arbitration input	I 3.3V	PU 10K	
NCSI_ARB_OUT	B99	NC-SI hardware arbitration output	O 3.3V		

Table 23 10 Gigabit Ethernet Signal Descriptions

Signal	Pin #	Description	I/O	PU/PD	Comment
10G_KR_TX0+ 10G_KR_TX0-	D49 D50	10GBASE-KR ports, transmit output differential pairs 0	O KR		
10G_KR_RX0+ 10G_KR_RX0-	C49 C50	10GBASE-KR ports, receive input differential pairs 0	I KR		
10G_KR_TX1+ 10G_KR_TX1-	D42 D43	10GBASE-KR ports, transmit output differential pairs 1	O KR		
10G_KR_RX1+ 10G_KR_RX1-	C42 C43	10GBASE-KR ports, receive input differential pairs 1	I KR		
10G_KR_TX2+ 10G_KR_TX2-	D29 D30	10GBASE-KR ports, transmit output differential pairs 2	O KR		
10G_KR_RX2+ 10G_KR_RX2-	C29 C30	10GBASE-KR ports, receive input differential pairs 2	I KR		
10G_KR_TX3+ 10G_KR_TX3-	D26 D27	10GBASE-KR ports, transmit output differential pairs 3	O KR		
10G_KR_RX3+ 10G_KR_RX3-	C26 C27	10GBASE-KR ports, receive input differential pairs 3	I KR		
10G_PHY_MDIO_ SDA[0:3]	D46 D45	MDIO Mode: Management Data I/O interface mode data signal for serial data transfers between the MAC and an external PHY	O 3.3V	PU 2.2K	10G_PHY_MDIO_SDA1 and 10G_PHY_MDIO_SDA3 are not
	D16 D15	I2C Mode: I2C data signal, of the 2-wire management interface used for serial data transfers between the MAC and an external PHY	I/O OD 3.3V	PU 2.2K	supported

10G_PHY_MDC_ SCL[0:3]	C46 C45	MDIO Mode: Management Data I/O Interface mode clock signal for serial data transfers between the MAC and an external PHY	O 3.3V	PU 2.2K	10G_PHY_MDC_SCL1 and 10G_PHY_MDC_SCL3 are not
	C16 C15	I2C Mode: I2C Clock signal, of the 2-wire management interface used for serial data transfers between the MAC and an external PHY	I/O OD 3.3V	PU 2.2K	supported
10G_PHY_CAP_01	D35	PHY mode capability pin: Indicates if the PHY for 10G lanes 0 and 1 is capable of configuration by I ² C. High indicates MDIO-only configuration, and low indicates configuration capability via I ² C or MDIO. The actual protocol used for PHY configuration is determined by the module. Based on this input, the actual protocol used is indicated over the dedicated I ² C interface	13.3V		Not connected
10G_PHY_CAP_23	D34	Phy mode capability pin: Indicates if the PHY for 10G lanes 2 and 3 is capable of configuration by I ² C. High indicates MDIO-only configuration, and low indicates configuration capability via I ² C or MDIO. The actual protocol used for PHY configuration is determined by the module. Based on this input, the actual protocol used is indicated over the dedicated I ² C interface	13.3V		Not connected
10G_SFP_SDA[0:3]	C39 C38 C33 C32	I2C data signal of the 2-wire management interface used by the 10GbE controller to access the management registers of an external Optical SFP module	I/O OD 3.3V	PU 2.2K	
10G_SFP_SCL[0:3]	D39 D38 D33 D32	I2C clock signal of the 2-wire management interface used by the 10GbE controller to access the management registers of an external Optical SFP module	I/O OD 3.3V	PU 2.2K	
10G_LED_SDA	C36	I2C Data of the 2-wire interface that transfers LED signals and PHY straps for I2C or MDIO operation of optical PHYs	I/O OD 3.3V		Not connected
10G_LED_SCL	C37	I2C Clock of the 2-wire interface that transfers LED and strap signals for I2C or MDIO operation of optical PHYs	I/O OD 3.3V		Not connected
10G_INT[0:3]	C47 D47 C24 D24	Interrupt pin from copper PHY or optical SFP Module to the 10GbE controller	I CMOS	PU 2.2K	
10G_SDP[0:3]	C40 D40 C17 D17	Software-Definable Pins. Can also be used for IEEE1588 support such as a 1pps signal	I/O 3.3V		Not connected
10G_PHY_RST_01	C35	Output signal that resets an optical PHY on port 0 and port1 (with copper PHY this signal is not used)	O 3.3V		
10G_PHY_RST_23	C34	Output signal that resets an Optical PHY on port 2 and port 3 (with copper PHY this signal is not used)	O 3.3V		_

Table 24 USB 2. 0 Signal Descriptions

Signal	Pin #	Description	I/O	PU/PD	Comment
USB0+ USB0-	A46 A45	USB Port 0, differential data pair	1/0		USB 2.0 compliant. Backwards compatible to USB 1.1
USB1+ USB1-	B46 B45	USB Port 1, differential data pair	1/0		USB 2.0 compliant. Backwards compatible to USB 1.1
USB2+ USB2-	A43 A42	USB Port 2, differential data pair	1/0		USB 2.0 compliant. Backwards compatible to USB 1.1
USB3+ USB3-	B43 B42	USB Port 3, differential data pair	1/0		USB 2.0 compliant. Backwards compatible to USB 1.1
USB_0_1_OC#	B44	USB over-current sense, USB ports 0 and 1. A pull-up for this line shall be present on the module. An open drain driver from a USB current monitor on the carrier board may drive this line low	I 3.3VSB	PU 10K	Do not pull this line high on the carrier board.
USB_2_3_OC#	A44	USB over-current sense, USB ports 2 and 3. A pull-up for this line shall be present on the module. An open drain driver from a USB current monitor on the carrier board may drive this line low	I 3.3VSB	PU 10K	Do not pull this line high on the carrier board.
USB0_HOST_ PRSNT	B48	Module USB client may detect the presence of a USB host on USB0. A high values indicates that a host is present	I 3.3VSB		Not connected

Table 25 USB 3.0 Signal Descriptions

Signal	Pin #	Description	I/O	PU/PD	Comment
USB_SSRX0+ USB_SSRX0-	C4 C3	Additional receive signal differential pairs for the Superspeed USB data path	I		
USB_SSTX0+ USB_SSTX0-	D4 D3	Additional transmit signal differential pairs for the Superspeed USB data path	0		
USB_SSRX1+ USB_SSRX1-	C7 C6	Additional receive signal differential pairs for the Superspeed USB data path	I		
USB_SSTX1+ USB_SSTX1-	D7 D6	Additional transmit signal differential pairs for the Superspeed USB data path	0		
USB_SSRX2+ USB_SSRX2-	C10 C9	Additional receive signal differential pairs for the Superspeed USB data path	I		
USB_SSTX2+ USB_SSTX2-	D10 D9	Additional transmit signal differential pairs for the Superspeed USB data path	0		
USB_SSRX3+ USB_SSRX3-	C13 C12	Additional receive signal differential pairs for the Superspeed USB data path	I		
USB_SSTX3+ USB_SSTX3-	D13 D12	Additional transmit signal differential pairs for the Superspeed USB data path	0		

Table 26 LPC Signal Descriptions

Signal	Pin #	Description	I/O	PU/PD	Comment
LPC_AD[0:3]	B4-B7	LPC multiplexed address, command and data bus	I/O 3.3V		
LPC_FRAME#	В3	LPC frame indicates the start of an LPC cycle	O 3.3V	PU 4.7K	
LPC_CLK	B10	LPC clock output - 24 MHz nominal	O 3.3V		
LPC_DRQ[0:1]#	B8-B9	LPC serial DMA request	I 3.3V		LPC_DRQ1# is not connected
LPC_SERIRQ	A50	LPC serial interrupt	I/O 3.3V	PU 10K	
SUS_STAT#	B18	In LPC mode, SUS_STAT# indicates imminent suspend operation. It is used to notify LPC devices that a low power state will be entered soon. LPC devices may need to preserve memory or isolate outputs during the low power state	O 3.3V		
ESPI_EN#	B47	This signal is used by the carrier to indicate the operating mode of the LPC/eSPI bus. If left unconnected on the carrier, LPC mode (default) is selected. If pulled to GND on the carrier, eSPI mode is selected. This signal is pulled to a logic high on the module through a resistor. The carrier should only float this line or pull it low	I 3.3V		Not connected

Table 27 SPI BIOS Flash Interface Signal Descriptions

Signal	Pin #	Description	I/O	PU/PD	Comment
SPI_CS#	B97	Chip select for carrier board SPI BIOS flash	O 3.3VSB		Carrier shall pull to SPI_POWER when
					external SPI is provided but not used.
SPI_MISO	A92	Data in to module from carrier board SPI BIOS flash	I 3.3VSB		
SPI_MOSI	A95	Data out from module to carrier board SPI BIOS flas	O 3.3VSB		
SPI_CLK	A94	Clock from module to carrier board SPI BIOS flash	O 3.3VSB		
SPI_POWER	A91	Power source for carrier board SPI BIOS flash. SPI_POWER shall be used to power	O 3.3V		
		SPI BIOS flash on the carrier only.			
BIOS_DIS0#	A34	Selection strap to determine the BIOS boot device	I 3.3VSB		Not supported
BIOS_DIS1#	B88	Selection strap to determine the BIOS boot device	I 3.3VSB	PU 10K	
				3.3 VSB	

Table 28 General Purpose Serial Interface Signal Descriptions

Signal	Pin #	Description	I/O	PU/PD	Comment
SERO_TX	A98	General purpose serial port transmitter	O 3.3V-T		
SERO_RX	A99	General purpose serial port receiver	I 3.3V-T	PU 47.5K 3.3V	
SER1_TX	A101	General purpose serial port transmitter	O 3.3V-T		
SER1_RX	A102	General purpose serial port receiver	I 3.3V-T	PU 47.5K 3.3V	

Table 29 I2C Signal Descriptions

Signal	Pin #	Description	I/O	PU/PD	Comment
I2C_CK	B33	General purpose I ² C port clock output	I/O OD 3.3VSB	PU 2.2K	
I2C_DAT	B34	General purpose I ² C port data I/O line	I/O OD 3.3VSB	PU 2.2K	

Table 30 Miscellaneous Signal Descriptions

Signal	Pin #	Description	I/O	PU/PD	Comment
SPKR	B32	Output for audio enunciator, the "speaker" in PC-AT systems	O 3.3V		Not supported
WDT	B27	Output indicating that a watchdog time-out event has occurred	O 3.3V	PD 100K	
FAN_PWMOUT	B101	Fan speed control. Uses the Pulse Width Modulation (PWM) technique to control the fan's RPM	O OD 3.3V-T		
FAN_TACHIN	B102	Fan tachometer input.	I OD 3.3V-T	PU 47.5K 3.3V	Requires a fan with a two pulse output.
TPM_PP	A96	Physical Presence pin of Trusted Platform Module (TPM). Active high. TPM chip has an internal pull-down. This signal is used to indicate Physical Presence to the TPM	I 3.3V	PD 100K	

Table 31 Power and System Management Signal Descriptions

Signal	Pin #	Description	I/O	PU/PD	Comment
PWRBTN#	B12	A falling edge creates a power button event. Power button events can be used to bring a system out of S5 soft off and other suspend states, as well as powering the system down	I 3.3VSB	PU 10K 3.3VSB	
SYS_RESET#	B49	Reset button input. Active low input. Edge triggered System will not be held in hardware reset while this input is kept low	I 3.3VSB	PU 10K 3.3VSB	
CB_RESET#	B50	Reset output from module to Carrier Board. Active low. Issued by module chipset and may result from a low SYS_RESET# input, a low PWR_OK input, a VCC_12V power input that falls below the minimum specification, a watchdog timeout, or may be initiated by the module software	O 3.3V		
PWR_OK	B24	Power OK from main power supply. A high value indicates that the power is good. This signal can be used to delay the startup of the of module to enable the programming of FPGAs or other configurable devices on the carrier board	I 3.3V		Set by resistor divider to accept 3.3V.
SUS_STAT#	B18	Indicates imminent suspend operation; used to notify LPC devices. Not used in eSPI implementations	O 3.3VSB		

Signal	Pin #	Description	I/O	PU/PD	Comment
SUS_S3#	A15	Indicates system is in Suspend to RAM state. Active-low output. An inverted copy of SUS_S3# on the carrier board may be used to enable the non-standby power on a typical ATX power supply	O 3.3VSB	PD 4.7K	Signal may be used to enable ATX power supply but does not initiate a "Suspend-to-RAM" state.
SUS_S4#	A18	SUS_S4# pin is tied to SUS_S5# pin. When asserted, it indicates that system is in Soft	O 3.3VSB	PD 4.7K	
SUS_S5#	A24	Off state	O 3.3VSB		
WAKE0#	B66	PCI Express wake up signal	I 3.3VSB	PU 10K 3.3VSB	
WAKE1#	B67	General purpose wake up signal. May be used to implement wake-up on PS/2 keyboard or mouse activity	1 3.3VSB		Not supported
BATLOW#	A27	Can be used as a power-fail indication	I 3.3VSB	PU 10K 3.3VSB	
LID#	A103	Lid button. Used by the ACPI operating system for a LID switch	I OD 3.3VSB-T	PU 47.5K 3.3VSB	
SLEEP#	B103	Sleep button. Used by the ACPI operating system to bring the system to sleep state or to wake it up again	I OD 3.3VSB-T	PU 10K 3.3VSB	

Table 32 Rapid Shutdown Signal Descriptions

Signal	Pin #	Description	I/O	PU/PD	Comment
RAPID_	C67	Trigger for Rapid Shutdown. Must be driven to 5V though a <=50 ohm source	I 3.3V		Not supported
SHUTDOWN		impedance for ≥ 20 µs			

Table 33 Thermal Protection Signal Descriptions

Signal	Pin #	Description	I/O	PU/PD	Comment
THRM#	B35	Input from off-module temp sensor indicating an over-temp situation	I 3.3V	PU 10K 3.3V	
THRMTRIP#	A35	Active low output indicating that the CPU has entered thermal shutdown	O 3.3V	PU 4.75K 3.3V	

Table 34 SMBus Signal Description

Signal	Pin #	Description	I/O	PU/PD	Comment
SMB_CK	B13	System Management Bus bidirectional clock line	I/O 3.3VSB	PU 2.2K	
SMB_DAT#	B14	System Management Bus bidirectional data line	I/O OD	PU 2.2K	
			3.3VSB		
SMB_ALERT#	B15	System Management Bus Alert – active low input can be used to generate an	I 3.3VSB	PU 10K 3.3VSB	
		SMI# (System Management Interrupt) or to wake the system			

Table 35 SDIO / General Purpose I/O Signal Descriptions

Signal	Pin #	Description	I/O	PU/PD	Comment
GPO0	A93	General purpose output pins. Shared with SD_CLK. Output from COM Express, input to SD	O 3.3V		
GPO1	B54	General purpose output pins. Shared with SD_CMD. Output from COM Express, input to SD	O 3.3V		
GPO2	B57	General purpose output pins. Shared with SD_WP. Output from COM Express, input to SD	O 3.3V		
GPO3	B63	General purpose output pins. Shared with SD_CD. Output from COM Express, input to SD	O 3.3V		
GPI0	A54	General purpose input pins. Pulled high internally on the module. Shared with SD_DATA0. Bidirectional signal	I 3.3V	PU 10K 3.3V	
GPI1	A63	General purpose input pins. Pulled high internally on the module. Shared with SD_DATA1. Bidirectional signal	I 3.3V	PU 10K 3.3V	
GPI2	A67	General purpose input pins. Pulled high internally on the module. Shared with SD_DATA2. Bidirectional signal	I 3.3V	PU 10K 3.3V	
GPI3	A85	General purpose input pins. Pulled high internally on the module. Shared with SD_DATA3. Bidirectional signal	I 3.3V	PU 10K 3.3V	

The conga-B7E3 does not support SDIO.

Table 36 Power and GND Signal Descriptions

Signal	Pin #	Description	I/O	PU/PD	Comment
VCC_12V	A104-A109 B104-B109 C104-C109 D104-D109	Primary power input: +12V nominal. All available VCC_12V pins on the connector(s) shall be used	Р		
VCC_5V_SBY	B84-B87	Standby power input: +5.0V nominal. If VCC5_SBY is used, all available VCC_5V_SBY pins on the connector(s) shall be used. Only used for standby and suspend functions. May be left unconnected if these functions are not used in the system design	P		
VCC_RTC	A47	Real-time clock circuit-power input. Nominally +3.0V	Р		
GND	A1, A11, A21, A31, A38, A41, A51, A57, A60, A66, A70, A73, A76, A79, A80, A83, A90, A100, A110 B1, B11, B21, B31, B38, B41, B51, B60, B70, B73, B76, B79, B80, B83, B90, B100, B110 C1, C2, C5, C8, C11, C14, C18, C21, C25, C28, C31, C41, C44, C48, C51, C60, C70, C73, C76, C80, C84, C87, C90, C93, C96, C100, C103, C110 D1, D2, D5, D8, D11, D14, D18, D21, D25, D28, D31, D41, D44, D48, D51, D60, D67, D70, D73, D76, D80, D84, D87, D90, D93, D96, D100, D103, D110	Ground - DC power and signal and AC signal return path. All available GND connector pins shall be used and tied to Carrier Board GND plane.	P		

Table 37 Module Type Definition Signal Description

Signal	Pin #	Description			I/O	Comment	
TYPE0# TYPE1# TYPE2#	C54 C57 D57	The TYPE pins indic on the module to e care (X)	PDS	TYPE[0:2]# signals are available on all modules following the Type 2-6			
		TYPE2#	TYPE1#	TYPE0#			Pinout standard. The conga-B7E3 is based
					Pinout Type 1 (deprecated) Pinout Type 2 (deprecated) Pinout Type 3 (deprecated) Pinout Type 4 (deprecated) Pinout Type 5 (deprecated) Pinout Type 6 Pinout Type 7 Pinout Type 10 odule TYPE pins and keeps power off ible module pin-out type is detected.	-	on the COM Express Type 7 pinout, therefore pins C54 and D57 are connected to GND and pin C57 is not connected.
		The carrier board lo					
TYPE10#	A97	Dual use pin. Indicates to the carrier board that a Type 10 module is installed. Indicates to the carrier that a Rev. 1.0/2.0 module is installed				PDS	Not connected to indicate "Pinout R2.0".
		TYPE10#					
		NC PD Pinout R2.0 Pinout Type 10 pull down to ground with 4.7K resistor Pinout R1.0					
		This pin is reclaimed from VCC_12V pool. In R1.0 modules this pin will connect to other VCC_12V pins. In R2.0 this pin is defined as a no-connect for Types 1-6. A carrier can detect a R1.0 module by the presence of 12V on this pin. R2.0 module Types 1-6 will no-connect this pin. R3.0 module types 6 and 7 will no-connect this pin. Type 10 modules shall pull this pin to ground through a 4.7K resistor					

8.2 Boot Strap Signals

Table 38 Boot Strap Signal Descriptions

Signal	Pin #	Description	I/O	PU/PD	Comment
LPC_FRAME#	В3	Boot interface selection	O 3.3V	PU 4.7K	

- 1. The signal listed in the table above is used as chipset configuration strap during system reset. During reset, the COM Express or chipset internal resistors pull this signal to the correct state.
- 2. Do not drive this signal until 1 microsecond after CB_RESET# de-asserts.

Caution

No external DC loads or external pull-up or pull-down resistors should change the configuration of the signal listed in the above table during the power-up sequence. The COM Express module may malfunction or be damaged if external resistors override the internal strap state.

9 System Resources

9.1 I/O Address Assignment

The I/O address assignment of the conga-B7E3 module is functionally identical with a standard PC/AT. The table below shows the most important addresses and the addresses that differ from the standard PC/AT configuration.

Table 39 I/O Resources

Address	Device
A00h - A3Fh	ASPEED BMC software wake control
A40h - A4Fh	ASPEED BMC mailbox
CA0h - CAFh	ASPEED BMC keyboard controller style interface
E00h - EFFh	congatec Board Controller

9.2 PCI Configuration Space Map

Table 40 PCI Device Mapping

Bus	Device	Function	Vendor ID	Device ID	Description
	(hex)	(hex)	(hex)	(hex)	·
00h / 40h ¹	00h	00h	1022h	1450h	Root Complex
00h / 40h ¹	00h	02h	1022h	1451h	IOMMU
00h / 40h ¹	01h	00h	1022h	1452h	PCIe Dummy Host Bridge
00h / 40h ¹	01h	01h	1022h	1453h	PCIe GPP Bridge 0
00h / 40h ¹	01h	02h	1022h	1453h	PCIe GPP Bridge 1
00h / 40h ¹	01h	03h	1022h	1453h	PCIe GPP Bridge 2
00h / 40h ¹	01h	04h	1022h	1453h	PCIe GPP Bridge 3
00h / 40h ¹	01h	05h	1022h	1453h	PCIe GPP Bridge 4
00h / 40h ¹	01h	06h	1022h	1453h	PCIe GPP Bridge 5
00h / 40h ¹	01h	07h	1022h	1453h	PCIe GPP Bridge 6
00h / 40h ¹	02h	00h	1022h	1452h	PCIe Dummy Host Bridge
00h / 40h ¹	02h	01h	1022h	1453h	PCIe GPP Bridge 7
00h / 40h ¹	03h	00h	1022h	1452h	PCIe Dummy Host Bridge
00h / 40h ¹	03h	01h	1022h	1453h	PCIe GPP Bridge 0
00h / 40h ¹	03h	02h	1022h	1453h	PCIe GPP Bridge 1
00h / 40h ¹	03h	03h	1022h	1453h	PCIe GPP Bridge 2

Bus	Device	Function	Vendor ID	Device ID	Description
	(hex)	(hex)	(hex)	(hex)	'
00h / 40h ¹	03h	04h	1022h	1453h	PCIe GPP Bridge 3
00h / 40h ¹	03h	05h	1022h	1453h	PCIe GPP Bridge 4
00h / 40h ¹	03h	06h	1022h	1453h	PCIe GPP Bridge 5
00h / 40h ¹	03h	07h	1022h	1453h	PCIe GPP Bridge 6
00h / 40h ¹	04h	00h	1022h	1452h	PCIe Dummy Host Bridge
00h / 40h ¹	04h	01h	1022h	1453h	PCIe GPP Bridge 7
00h / 40h ¹	07h	00h	1022h	1452h	PCIe Dummy Host Bridge
00h / 40h ¹	07h	01h	1022h	1454h	Internal PCIe GPP Bridge 0 to Bus B / D
00h / 40h ¹	08h	00h	1022h	1452h	PCIe Dummy Host Bridge
00h / 40h ¹	08h	01h	1022h	1454h	Internal PCIe GPP Bridge 0 to Bus C / E
00h	14h	00h	1022h	790Bh	SMBus Controller
00h	14h	03h	1022h	790Eh	LPC Bridge
00h	18h	00h	1022h	1460h	Data Fabric
00h	18h	01h	1022h	1461h	Data Fabric
00h	18h	02h	1022h	1462h	Data Fabric
00h	18h	03h	1022h	1463h	Data Fabric
00h	18h	04h	1022h	1464h	Data Fabric
00h	18h	05h	1022h	1465h	Data Fabric
00h	18h	06h	1022h	1466h	Data Fabric
00h	18h	07h	1022h	1467h	Data Fabric
00h	19h	00h	1022h	1460h	Data Fabric ⁴
00h	19h	01h	1022h	1461h	Data Fabric ⁴
00h	19h	02h	1022h	1462h	Data Fabric ⁴
00h	19h	03h	1022h	1463h	Data Fabric ⁴
00h	19h	04h	1022h	1464h	Data Fabric ⁴
00h	19h	05h	1022h	1465h	Data Fabric ⁴
00h	19h	06h	1022h	1466h	Data Fabric ⁴
00h	19h	07h	1022h	1467h	Data Fabric ⁴
Bus B / D ²	00h	00h	1022h	145Ah	PCIe Dummy Function
Bus B / D ²	00h	02h	1022h	1456h	Cryptographic Coprocessor PSPCCP
Bus B / D ²	00h	03h	1022h	145Fh	USB3 XHC
Bus C / E ²	00h	00h	1022h	1455h	PCIe Dummy Function
Bus C / E ²	00h	01h	1022h	1468h	Cryptographic Coprocessor NTBCCP
Bus C	00h	02h	1022h	7901h	SATA AHCI Mode
Bus C	00h	03h	1022h	1457h	HD Audio Controller
Bus C	00h	04h	1022h	1458h	10 Gb Ethernet Controller (XGbE) Port 0
Bus C	00h	05h	1022h	1458h	10 Gb Ethernet Controller (XGbE) Port 1
Bus C	00h	06h	1022h	1459h	10 Gb Ethernet Controller (XGbE) Port 2
Bus C	00h	07h	1022h	1459h	10 Gb Ethernet Controller (XGbE) Port 3

Bus	Device (hex)	Function (hex)	Vendor ID (hex)	Device ID (hex)	Description
Bus E	00h	04h	1022h	1458h	10 Gb Ethernet Controller (XGbE) Port 2 ⁴
Bus E	00h	05h	1022h	1458h	10 Gb Ethernet Controller (XGbE) Port 3 ⁴
Bus I ³	00h	00h	8086h	1533h	Intel Ethernet Controller (i210 GbE)
Bus J ³	00h	00h	126Fh	2263h	Onboard NVMe SSD ⁴
Bus K ³	00h	00h	1A03h	1150h	ASPEED 2500 BMC ⁵
Bus L ³	00h	00h	1A03h	2000h	ASPEED 2500 BMC VGA ⁵

- ¹ The boot die in a multi-die processor assigns bus to 00h. For SP4 processor, bus 40h is assigned to die 1.
- ² Programmable bus numbers are labeled B, C, D and E. Buses with different labels cannot be assigned the same bus number. Bus B and C are associated with the boot die, and Bus D and E are associated with die 1 for SP4 processor.
- ^{3.} The bus numbers represented with I, J, K and L will vary depending on the system configuration (lane width), the connected PCIe devices (switches or bridges) and where PCIe devices are connected.
- ^{4.} Applies only to conga-B7E3 variants with SP4 processor.
- ^{5.} These devices are not available if the BMC is not implemented on the carrier board.

9.3 I²C Bus

There are no onboard resources connected to the I²C bus. Address 16h is reserved for congatec Battery Management solutions.

9.4 SM Bus

System Management (SM) bus signals are connected to the AMD SoC. The SM bus is not intended to be used by off-board non-system management devices. For more information about this subject, contact congatec technical support.

10 BIOS Setup Description

The BIOS setup description of the conga-B7E3 can be viewed without having access to the module. However, access to the restricted area of the congatec website is required in order to download the necessary tool (CgMlfViewer) and Menu Layout File (MLF).

The MLF contains the BIOS setup description of a particular BIOS revision. The MLF can be viewed with the CgMlfViewer tool. This tool offers a search function to quickly check for supported BIOS features. It also shows where each feature can be found in the BIOS setup menu.

For more information, read the application note "AN42 - BIOS Setup Description" available at www.congatec.com.

If you do not have access to the restricted area of the congatec website, contact your local congatec sales representative.

10.1 Navigating the BIOS Setup Menu

The BIOS setup menu shows the features and options supported in the congatec BIOS. To access and navigate the BIOS setup menu, press the or <F2> key during POST.

The right frame displays the key legend. Above the key legend is an area reserved for text messages. These text messages explain the options and the possible impacts when changing the selected option in the left frame.

10.2 BIOS Versions

The BIOS displays the BIOS project name and the revision code during POST, and on the main setup screen. The initial production BIOS for conga-B7E3 is identified as B7E3R1xx, where:

- R is the identifier for a BIOS binary file,
- 1 is the so called feature number and
- xx is the major and minor revision number.

The conga-B7E3 BIOS binary size is 16 MB.

10.3 Updating the BIOS

BIOS updates are recommeded to correct platform issues or enhance the feature set of the module. The conga-B7E3 features a congatec/AMI AptioEFI firmware on an onboard flash ROM chip. You can update the firmware with the congatec System Utility. The utility has five versions—UEFI shell, DOS based command line¹, Win32 command line, Win32 GUI, and Linux version.

For more information about "Updating the BIOS" refer to the user's guide for the congatec System Utility "CGUTLm1x.pdf" on the congatec website at www.congatec.com.

^{1.} Deprecated.

Caution

The DOS command line tool is not officially supported by congatec and therefore not recommended for critical tasks such as firmware updates. We recommend to use only the UEFI shell for critical updates.

10.4 Recovering from External Flash

The following congatec documents describe how to recover a congatec module from external flash. You can find these documents on the congatec website:

- AN1_BIOS_Update.pdf
- AN5_BIOS_Update_And_Write_Protection.pdf
- AN7_External_BIOS_Update.pdf

10.5 Supported Flash Devices

The conga-B7E3 supports the following flash devices:

- Winbond W25Q128JVSIQ
- Macronix MX25L12833FM2I-10G
- Macronix MX25L12835FM2I-10G

The flash devices listed above can be used on the carrier board to support external BIOS. For more information about external BIOS support, refer to the Application Note AN7 External BIOS Update.pdf on the congatec website at http://www.congatec.com.

