

User Manual

IDK-1108R-45SVA1E

TFT-LCD 8.4" SVGA (LED Backlight)

Copyright

The documentation and the software included with this product are copyrighted 2012 by Advantech Co., Ltd. All rights are reserved. Advantech Co., Ltd. reserves the right to make improvements in the products described in this manual at any time without notice. No part of this manual may be reproduced, copied, translated or transmitted in any form or by any means without the prior written permission of Advantech Co., Ltd. Information provided in this manual is intended to be accurate and reliable. However, Advantech Co., Ltd. assumes no responsibility for its use, nor for any infringements of the rights of third parties, which may result from its use.

Acknowledgements

AMI is a trademark of American Megatrends Inc.

IBM and PC are trademarks of International Business Machines Corporation.

Intel® Core 2 Quad, Pentium Dual Core and Celeron are trademarks of Intel Corporation.

WinBond is a trademark of Winbond Corporation.

All other product names or trademarks are properties of their respective owners.

Part No. 2006110802 Printed in China Edition 3 Sep 2012

A Message to the Customer

Advantech Customer Services

Each and every Advantech product is built to the most exacting specifications to ensure reliable performance in the harsh and demanding conditions typical of industrial environments. Whether your new Advantech equipment is destined for the laboratory or the factory floor, you can be assured that your product will provide the reliability and ease of operation for which the name Advantech has come to be known.

Your satisfaction is our primary concern. Here is a guide to Advantech's customer services. To ensure you get the full benefit of our services, please follow the instructions below carefully.

Technical Support

We want you to get the maximum performance from your products. So if you run into technical difficulties, we are here to help. For the most frequently asked questions, you can easily find answers in your product documentation. These answers are normally a lot more detailed than the ones we can give over the phone.

So please consult this manual first. If you still cannot find the answer, gather all the information or questions that apply to your problem, and with the product close at hand, call your dealer. Our dealers are well trained and ready to give you the support you need to get the most from your Advantech products. In fact, most problems reported are minor and are able to be easily solved over the phone.

In addition, free technical support is available from Advantech engineers every business day. We are always ready to give advice on application requirements or specific information on the installation and operation of any of our products.

Product Warranty (2 years)

Advantech warrants to you, the original purchaser, that each of its products will be free from defects in materials and workmanship for two years from the date of purchase.

This warranty does not apply to any products which have been repaired or altered by persons other than repair personnel authorized by Advantech, or which have been subject to misuse, abuse, accident or improper installation. Advantech assumes no liability under the terms of this warranty as a consequence of such events.

Because of Advantech's high quality-control standards and rigorous testing, most of our customers never need to use our repair service. If an Advantech product is defective, it will be repaired or replaced at no charge during the warranty period. For out-of-warranty repairs, you will be billed according to the cost of replacement materials, service time and freight. Please consult your dealer for more details.

If you think you have a defective product, follow these steps:

- Collect all the information about the problem encountered. (For example, CPU speed, Advantech products used, other hardware and software used, etc.) Note anything abnormal and list any onscreen messages you get when the problem occurs.
- 2. Call your dealer and describe the problem. Please have your manual, product, and any helpful information readily available.
- 3. If your product is diagnosed as defective, obtain an RMA (return merchandise authorization) number from your dealer. This allows us to process your return more quickly.
- 4. Carefully pack the defective product, a fully-completed Repair and Replacement Order Card and a photocopy proof of purchase date (such as your sales receipt) in a shippable container. A product returned without proof of the purchase date is not eligible for warranty service.
- 5. Write the RMA number visibly on the outside of the package and ship it prepaid to your dealer.

Contents

Chapter	1	Overview	1
	1.1	General Description	2
	1.2	Display Characteristics	2
	1.3	Functional Block Diagram	
		Figure 1.1 Function block diagram	
	1.4	Absolute Maximum Ratings	3
		1.4.1 Absolute Ratings of TFT LCD Module	
		1.4.2 Absolute Ratings of Environment	
	1.5	Outline Dimension	4
Chapter	2	Electrical Characteristics	5
	2.1	TFT LCD Module	6
		2.1.1 Power Specification	6
		Table 2.1: Power Specification	6
		2.1.2 Signal Electrical Characteristics	
		Table 2.2: Signal Electrical Characteristics	
	2.2	Backlight Unit	
		2.2.1 Parameter Guideline for LED Backlight	7
		Table 2.3: Backlight Driving Conditions	7
Chapter	3	Signal Characteristics	9
_	3.1	Signal Description	10
	0.1	Table 3.1: Symbol Description	
	3.2	The Input Data Format	
	0.2	3.2.1 SEL68	
	3.3	Interface Timing	
	0.0	3.3.1 Timing Characteristics	
		Table 3.2: Timing Characteristics	
		3.3.2 Input Timing Diagram	
	3.4	Power ON/OFF Sequence	
Chapter	4	Display Connector Definition	15
	4.1	TFT LCD Signal (CN1): LVDS Connector	
	7.1	Table 4.1: TFT LCD Signal (CN1): LVDS Connector	
		Table 4.2: Pin Assignment	
	4.2	LED Backlight Unit (CN2): LED Driver Connector	
	4.3	LED Light Bar Input Connector (CN3)	
	4.0	Table 4.3: LED Light Bar Input Connector (CN3)	
Chapter	5	Touch Screen	19
•	E 4		
	5.1 5.2	Touch Characteristics	
	5.2 5.3	Optical Characteristics Environmental Characteristics	
	5.3 5.4		
	5.4 5.5	Mechanical Characteristics Electronic Characteristics	
	ა.ა	Electronic onaractensics	∠0

Chapter	6	Touch Controller	21
	6.1	Touch Controller Characteristics	22
	6.2	Specifications	22
	6.3	Environmental Feature	22
	6.4	Pin Assignment and Description	
		6.4.1 Connector and LED Location	
		6.4.2 Combo Interface Connector, JP1, Pins and Signal Description Figure 6.1 Board mounted header	
		6.4.3 Touch Screen Connector, JP2, Pins and Signal Descript	
Appendi	хА	Optical Characteristics	25
	A.1	Optical Characteristics	26
		Table A.1: Optical Characteristics	26
Appendi	хВ	Handling Precautions	29
	B.1	Handling Precautions	30

Chapter

Overview

1.1 General Description

This document is for the 8.4 inch color TFT LCD module IDK-1108R-45SVA1E. IDK-1108R-45SVA1E is designed with wide viewing angle; wide operating temperature and long life LED backlight and is suited for display units for Industrial Applications. An LED driving board for backlight unit is included in this panel and the structure of the LED units is replaceable. IDK-1108R-45SVA1E has a built in timing controller and LVDS interface. The screen format is intended to support a 800 x 600 (H x W) SVGA screen and 16.2M (RGB 8-bits) or 262k colors (RGB 6-bits). IDK-1108R-45SVA1E is a RoHS product.

1.2 Display Characteristics

The following items are characteristics summary on the table under 25°C condition.

Items	Unit	Specifications
Screen Diagonal	[inch]	8.4 (213.4mm)
Active Area	[mm]	170.4(H) x 127.8(V)
Pixels H x V		800x3(RGB) x 600
Pixel Pitch	[mm]	0.213x 0.213
Pixel Arrangement		R.G.B. Vertical Stripe
Display Mode		TN, Normally White
Nominal Input Voltage VDD	[Volt]	3.3 (typ)
Typical Power Consumption	[Watt]	2.94 (typ)
Weight	[Grams]	328.5 (typ)
Physical Size	[mm]	203.0(W) x 142.6(H) x 10.3(D) (typ.)
Electrical Interface		1 channel LVDS
Surface Treatment		Anti-glare, Hardness 3H
Support Color		262K(6-bit) / 16.2M(8-bit)
Temperature Range		
Operating	[°C]	-10 to +60 (panel surface tempera-
Storage (Non-Operating)	[°C]	ture)
		-30 to +70
RoHS Compliance		RoHS Compliance

1.3 Functional Block Diagram

The following diagram shows the functional block of the 12.1 inches Color TFT-LCD Module:

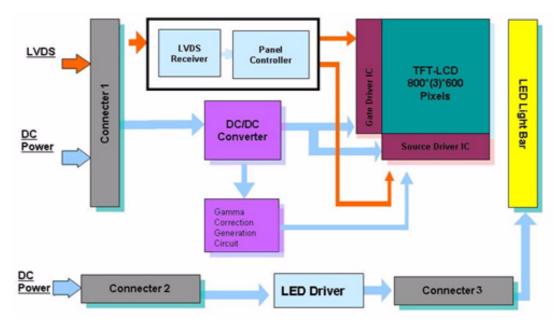
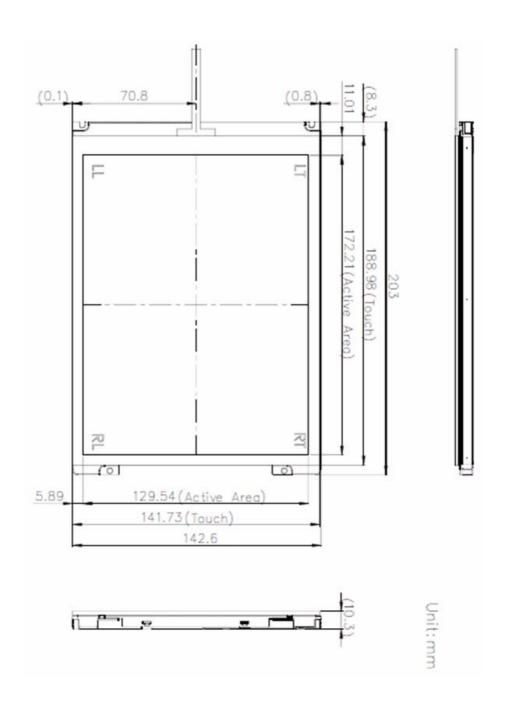


Figure 1.1 Function block diagram

1.4 Absolute Maximum Ratings

1.4.1 Absolute Ratings of TFT LCD Module


Item	Symbol	Min.	Max.	Unit
Logic/LCD Drive	VDD	-0.3	+3.6	[Volt]

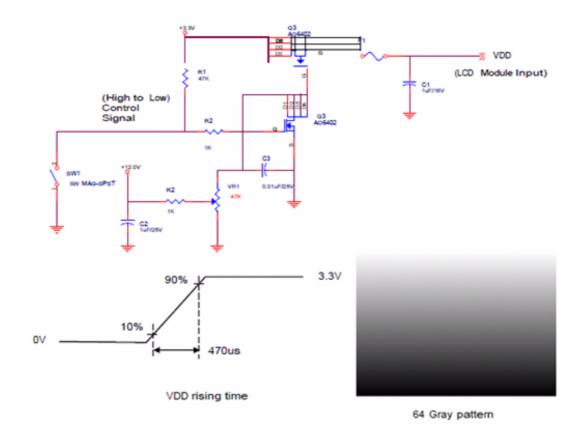
1.4.2 Absolute Ratings of Environment

Item	Symbol	Min.	Max.	Unit
Operating Temperature	TOP	-10	+60	[oC]
Operation Humidity	HOP	10	90	[%RH]
Storage Temperature	TST	-30	+85	[oC]
Storage Humidity	HST	10	90	[%RH]

Note: Maximum Wet-Bulb should be 39°C and no condensation.

1.5 Outline Dimension

Chapter

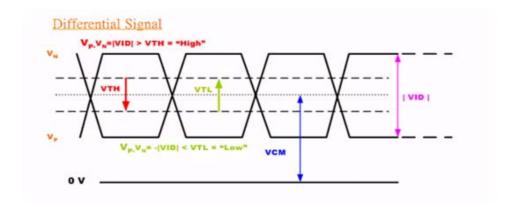

Electrical Characteristics

2.1 TFT LCD Module

2.1.1 Power Specification

Table 2.1: F	Table 2.1: Power Specification								
Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition			
VDD	Logic/LCD Drive Voltage	3.0	3.3	3.6	[Volt]	10%			
IDD	Input Current	-	200	220	[mA]	64 Gray Bar Pattern (VDD=3.3V, at 60Hz)			
PDD	VDD Power	-	0.66	0.73	[Watt]	64 Gray Bar Pattern (VDD=3.3V, at 60Hz)			

Note1 Measurement condition:



2.1.2 Signal Electrical Characteristics

Input signals shall be low or Hi-Z state when VDD is off.

Table 2.2: Signal Electrical Characteristics							
Symbol	Item	Min.	Тур.	Max.	Unit	Remark	
VTH	Differential Input High Threshold	-	-	100	[mV]	VCM=1.2V	
VTL	Differential Input Low Threshold	-100	-	-	[mV]	VCM=1.2V	
VID	Input Differential Voltage	100	400	600	[mV]		
VICM	Differential Input Common Mode Voltage	1.1	-	1.6	[V]	VTH / VTL = ±100mV	

Note LVDS Signal Waveform.

2.2 Backlight Unit

2.2.1 Parameter Guideline for LED Backlight

Following characteristics are measured under a stable condition using an inverter at 25°C (Room Temperature):

Table 2.3: E	Backlight Driv	ing Cond	ditions			
Symbol	Parameter	Min.	Тур.	Max.	Unit	Remark
VCC	Input Voltage	10.8	12	12.6	[Volt]	_
I _{VCC}	Input Current	-	0.17	-	[A]	100% PWM Duty
P _{VCC}	Power Consumption	-	2.04	2.14	[Watt]	100% PWM Duty
P _{PWM}	Dimming Frequency	20	-	20K	[Hz]	
	Swing Voltage	3	3.3	5	V	
	Dimming Duty Cycle	5	-	100	%	
I _F	LED Forward Current	-	50	52.5	mA	Ta = 25°C
		-	21		Volt	I _F = 50mA, Ta = -30°C
V _F	LED Forward Voltage		19.2	21.9	Volt	I _F = 50mA, Ta = 25°C
			18.3			I = 50mA, Ta = 85°C
P _{LED}	LED Power Consumption	-	1.92	-	Watt	I _F = 50mA, Ta = 25°C (total power)
Operation Lifetime		50,000			Hrs	I _F = 50mA, Ta = 25°C

Note1 Ta means ambient temperature of TFT-LCD module.

Note2 VCC, Ivcc, PVCC, are defined for LED B/L.(100% duty of PWM dimming)

Note3 IF, VF are defined for each channel of LED Light Bar. There are two LED channels (AN1-CA1-CA2) in backlight unit.

Note4 If IDK-1108R-45SVA1E module is driven by high current or at high ambient temperature & humidity condition. The operating life will be reduced.

Note5 Operating life means brightness goes down to 50% initial brightness. Minimum operating life time is estimated data.

Chapter 3

Signal Characteristics

3.1 Signal Description

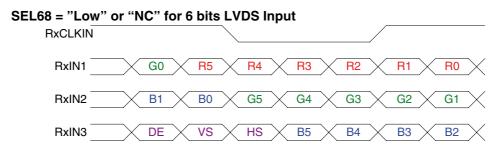
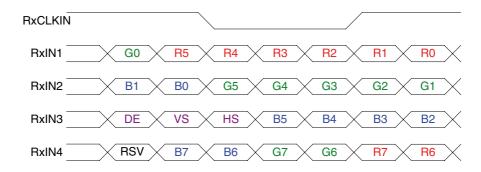

LVDS is a differential signal technology for LCD interface and high speed data transfer device. Connector pin definitions are below.

Table 3	3.1: Symbol	Description			
Pin No.	Symbol	Description			
1	VDD	Power Supply, 3.3V(typical)			
2	VDD	Power Supply, 3.3V(typical)			
3	UD	Vertical Reverse Scan Control,			
		When UD=Low or NC -> Normal Mode.			
		When UD=High -> Vertical Reverse Scan. Note			
4	LR	Horizontal Reverse Scan Control,			
		When LR=Low or NC -> Normal Mode. When LR=High -> Horizontal Reverse Scan. Note			
	DalNa	When EK=High -> Honzonial Keverse Scan. Note			
5	RxIN1-	LVDS differential data input Pair 0			
6	RxIN1+	· · · · · · · · · · · · · · · · · · ·			
7	GND	Ground			
8	RxIN2-	LVDS differential data input Pair 1			
9	RxIN2+				
10	GND	Ground			
11	RxIN3-	— LVDS differential data input Pair 2			
12	RxIN3+				
13	GND	Ground			
14	RxCLKIN-	— LVDS differential Clock input Pair			
15	RxCLKIN+	— EVD3 dillerential Clock input Fall			
16	GND	Ground			
17	SEL 68	LVDS 6/8 bit select function control, Low or NC -> 6 Bit Input			
		Mode.			
		High -> 8 Bit Input Mode. Note			
18	NC	NC			
19	RxIN4-	_ LVDS differential data input Pair 3. Must be set to NC in 6 bit input			
20	RxIN4+	mode.			


Note1 "Low" stands for 0V. "High" stands for 3.3V. "NC" stands for "No Connected."

3.2 The Input Data Format

3.2.1 **SEL68**

SEL68 = "High" for 8 bits LVDS Input

Note1: Please follow PSWG.

Note2: R/G/B data 7:MSB, R/G/B data 0:LSB

Signal Name	Description	Remark
R7	Red Data 7 (MSB)	
R6	Red Data 6	_
R5	Red Data 5	_
R4	Red Data 4	Red-pixel Data
R3	Red Data 3	 Each red pixel's brightness data consists of these 8 bits pixel data.
R2	Red Data 2	_ 1.1.000 0 2.10 p.n.o. data.
R1	Red Data 1	
R0	Red Data 0 (LSB)	
G7	Green Data 7 (MSB)	
G6	Green Data 6	
G5	Green Data 5	_
G4	Green Data 4	Green-pixel Data
G3	Green Data 3	 Each green pixel's brightness data consists of these 8 bits pixel data.
G2	Green Data 2	_ 1.1.000 0 2.10 p.n.o. data.
G1	Green Data 1	
G0	Green Data 0 (LSB)	

B7	Blue Data 7 (MSB)			
B6	Blue Data 6			
B5	Blue Data 5			
B4	Blue Data 4	──Blue-pixel Data ──Each blue pixel's brightness data consists of		
B3	Blue Data 3	these 8 bits pixel data.		
B2	Blue Data 2			
B1	Blue Data 1	_		
B0	Blue Data 0 (LSB)	 -		
RxCLKIN+ RxCLKIN-	LVDS Clock Input			
DE	Display Enable			
VS	Vertical Sync			
HS	Horizontal Sync			

Note: Output signals from any system shall be low or Hi-Z state when VDD is off.

3.3 Interface Timing

3.3.1 Timing Characteristics

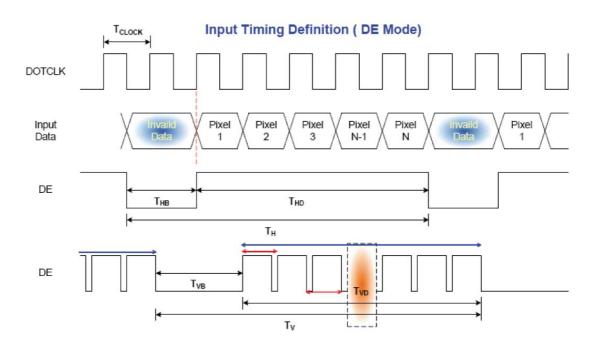
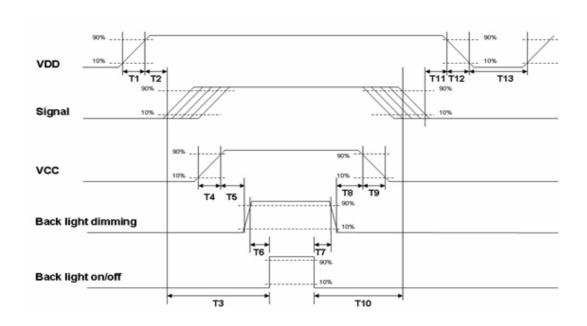

DE mode only

Table 3.2: Timing Characteristics						
Parameter		Symbol	Min.	Тур.	Max.	Unit
Clock frequ	ency	1/ T _{Clock}	33.6	39.8	48.3	MHz
	Period	T_V	608	628	650	
Vertical Section	Active	T _{VD}	600	600	600	
Coolion	Blanking	T _{VB}	8	28	50	
	Period	T _H	920	1056	1240	
Horizontal Section	Active	T _{HD}	800	800	800	T _{Clock}
000011	Blanking	T _{HB}				

Note Frame rate is 60 Hz.


Note DE mode.

3.3.2 Input Timing Diagram

3.4 Power ON/OFF Sequence

VDD power and lamp on/off sequence is as follows. Interface signals are also shown in the chart. Signals from any system shall be Hi-Z state or low level when VDD is off.

Power ON/OFF Sequence Timing

Parameter		Value		Unit	
	Min.	Тур.	Max.		
T1	0.5	-	10	[ms]	
T2	30	40	50	[ms]	
T3	200	-	-	[ms]	
T4	0.5	-	10	[ms]	

T5	10	-	-	[ms]
T6	10	-	-	[ms]
T7	0	-	-	[ms]
T8	10	-	-	[ms]
T9	-	-	10	[ms]
T10	110	-	-	[ms]
T11	0	16	50	[ms]
T12	-	-	10	[ms]
T13	1000	-	-	[ms]

The above on/off sequence should be applied to avoid abnormal function in the display. Please make sure to turn off the power when you plug the cable into the input connector or pull the cable out of the connector.

Chapter

4

Display Connector Definition

4.1 TFT LCD Signal (CN1): LVDS Connector

Table 4.1: TFT LCD Signal (CN1): LVDS Connector			
Connector Name / Description	Signal Connector		
Manufacturer	STM, Hirose or compatible		
Connector Model Number	STM -MSB24013P20HA, Hirose- DF19LA- 20P-1H or compatible		
Mating Model Number	STM-P24013P20, Hirose-DF19-20S-1C or compatible		

Table 4.2: Pin Assignment				
Pin No.	Signal Name	Pin No.	Signal Name	
1	VDD	2	VDD	
3	UD	4	LR	
5	RxIN1	6	RxIN1	
7	GND	8	RxIN2	
9	RxIN2	10	GND	
11	RxIN3	12	RxIN3	
13	GND	14	RxCKIN	
15	RxCKIN+	16	GND	
17	SEL	18	NC	
19	RxIN4	20	RxIN4	

4.2 LED Backlight Unit (CN2): LED Driver Connector

Connector Name / Designation	LED Connector		
Manufacturer	ENTERY		
Connector Model Number	ENTERY 3808K-F04N-02R or compatible		
Mating Model Number	ENTERY H208K-P04N-02B or compatible.		

Symbol	Pin Description	
VCC	12V input	
GND	GND	
Display ON/OFF	+5.0V or +3.3 V:ON, 0V:OFF	
Dimming	PWM	
	VCC GND Display ON/OFF	

4.3 LED Light Bar Input Connector (CN3)

Table 4.3: LED Light Bar Input Connector (CN3)			
Connector Name / Description Signal Connector			
Manufacturer	ENTERY 3800K-F03N-03 or compatible		
Mating Connector Model Number	ENTERY H203K-D03N-04B or compatible		

Pin #	Symbol	Pin Description	
1	AN	LED	
2	CA	LED	
3	CA	LED	

Pin #	Symbol	Pin Description
1	AN1	Red
2	CA1	Black
3	CA2	Black

Chapter

Touch Screen

5.1 Touch Characteristics

TOUCH PANEL is resistance type that customer uses with flat display like LCD. Once operator touches it by resin PEN with round end or FINGER, the circuit for TOUCH PANEL sends coordinate point to PC from voltage at contact point.

5.2 Optical Characteristics

	Item	Specification	Remarks
1	TRANSPARENCY	82.5% Typ. 80% Min. (Active area) (Inside of guaranteed active are	JIS K-7105 a)
2	HAZE	8.0% Typ. (Anti-glare)	JIS K-7105

5.3 Environmental Characteristics

	Item	Specification	Remarks
1	Operation temperature	-10°C ~ 60°C	
2	Storage temperature	-30°C ~ 70°C	———Max. wet Temp is 38°C(No dew)
3	Operation Humidity	20% ~ 90%RH	
4	Storage temperature	10% ~ 90%RH	

5.4 Mechanical Characteristics

	Item	Specification		Remarks
1	Hardness of surface	Pencil hardness 3H.		JIS K-5600-5-4 150gf, 45 degree
2	FPC peeling strength	1) 5N (5N Min.) 2) 19.6N (19.6N Min.)		1) Peeling upward by 90°2) Peeling downward by 90°
3	Operation force	Pen Finger	_0.05N~1.96 N (5~200gf)	Dot-Spacer Within "guaranteed active area", but not on the age and Dot- Spacer.

5.5 Electronic Characteristics

	Item	Specification	Remarks	
1	Rated Voltage	DC 7V max.		
2	Resistance	X axis: $200\Omega \sim 1000\Omega$ (Glass side)	FPC connector	
2	Resistance	Y axis: $100\Omega \sim 800\Omega$ (Film side)		
3	Linearity	±1.5%max initial value ±2.0%max "after environmental & life test"	Reference: 250gf	
4	Chattering	20ms Max		
		At connector pin		
5	Insulation Resistance	10M Ω min(DC 25V)		

Chapter

Touch Controller

6.1 Touch Controller Characteristics

Advantech ETM-RES05C Touch Control Board, the ultimate combo board. This touch panel controller provides the optimistic performance of your analog resistive touch panels for 4 wire models. It communicates with PC system directly through USB and RS-232 connector. You can see how superior the design is in sensitivity accuracy and friendly operation. The touch panel driver emulates mouse left and right button function and supports operation systems as following.

6.2 Specifications

Electrical Features

- +5 Vdc/ 100 mA typical, 50mV peak to peak maximum ripple and noise.
- Bi-directional RS-232 serial communication and USB 1.1 full speed
- Report rate of RS-232 is 180 points/sec (max.). And, USB is 200 points/sec (max.)
- Unaffected by environmental EMI
- Panel resistance of 4-wire resistive model is from 50 to 200 ohm (Pin to pin on same layer)
- Touch resistance under 3K ohm

Serial Interface

- EIA 232E (Serial RS-232)
- No parity, 8 data bits, 1 stop bit, 9600 baud (N, 8, 1, 9600)
- Support Windows 2000/ Vista/ XP/ 7, Windows CE 5.0/ 6.0/ 7.0, Windows NT4, Linux, DOS, QNX

USB Interface

- Conforms to USB Revision 1.1 full speed.
- If the USB is connected to the controller, the controller will communicate over the USB, and will not communicate over the serial port.
- Support Windows 2000/ Vista/ XP/ 7, Windows CE 5.0/ 6.0/ 7.0, Linux, QNX

Touch Resolution

2,048 x 2,048 resolution

Response Time

Max. 20 ms

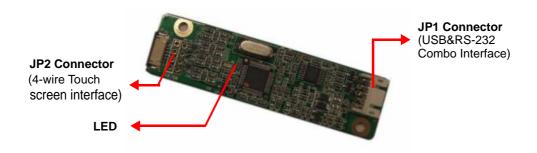
6.3 Environmental Feature

Reliability

MTBF is 200,000 hours

Temperature Ranges

Operating: -25°C ~ 85°CStorage: -25°C ~ 85°C


Relative Humidity

95% at 60°C, RH Non-condensing

Acquired RoHS certificate
Requiatory FCC-B, CE approvals
Dimension: 75 mm x 20 mm x 10 mm

6.4 Pin Assignment and Description

6.4.1 Connector and LED Location

6.4.2 Combo Interface Connector, JP1, Pins and Signal Descriptions

The combo interface connector, USB and RS-232, is a box 2.0mm 10-pins 90 degree, Male type with lock connector, intended to be used with single wired pins in 5+5 pins header. The pins are numbered as shown in the table below.

USB Pin#	Signal Name	Signal Function
1	G	Ground
2	V	USB Power
3	G	Ground
4	D+	USB D+
5	D-	USB D-

RS-232 Pin#	Signal Name	Signal Function
1	G	Ground
2	V	Power
3	G	Ground
4	TxD	Serial Port
5	RxD	Serial Port

Signal Name	DB-9 pin #	RS-232 pin #	Sourced by	Signal Description
RxD	2	5	ctlr	serial data from controller to host
TxD	3	4	host	serial data from host to controller

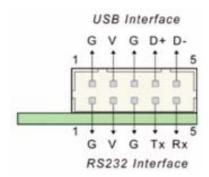
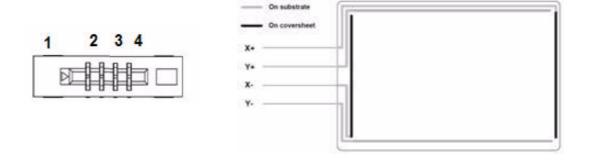



Figure 6.1 Board mounted header

6.4.3 Touch Screen Connector, JP2, Pins and Signal Descriptions

The Touch Screen connector, JP2, is a FFC/FPC SMD 1.0mm 4-pins 90 degree, Female type connector. The pins are numbered as shown in the table below.

TS4 Pin #	Signal Name	Signal Description
1	YB	Bottom
2	XL	Left
3	YT	Тор
4	XR	Right

4-Wire Touch Screen ZIF connector

4-Wire Screen viewed from coversheet side

Appendix A

Optical Characteristics

A.1 Optical Characteristics

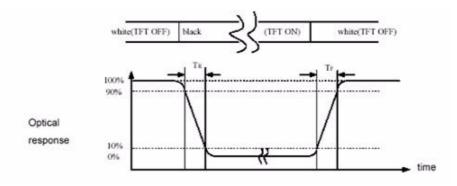

The optical characteristics are measured under stable conditions at 25°C (Room Temperature):

Table A.1: Optical Characteristics								
Item	Unit	Conditions	Min.	Тур.	Max.	Note		
White Luminance	[cd/m2]	IF= 50mA (center point)	350	450	-	1		
Uniformity	%	9 Points	70	75	-	1,2,3		
Contrast Ratio			400	600	-	4		
	[msec]	Rising	-	20	30			
Response Time	[msec]	Falling	-	10	20	5		
	[msec]	Rising + Falling	-	30	50			
	[degree]	Horizontal (Right)	70	80	-	-6		
Viewing Angle	[degree]	CR = 10 (Left)	70	80	-			
Viewing Angle	[degree]	Vertical (Upper)	70	80	-			
	[degree]	CR = 10 (Lower)	70	80	-			
		Red x	0.559	0.609	0.659	<u>-</u>		
		Red y	0.283	0.333	0.383			
		Green x	0.315	0.365	0.415			
Color/Chromaticity Coor-		Green y 0.520 0.5		0.570	0.620			
dinates (CIE 1931)		Blue x	0.101	0.151	0.201	- 4 -		
		Blue y	0.056	0.106	0.156			
	White x		0.26	0.31	0.36	-		
		White y	0.28	0.33	0.38	=		
Contrast Ratio				45	-	1		

Note

These items are measured by BM-5A(TOPCON) or CA-1000(MINOLTA) in the dark room (no ambient light) After 5 minutes operation, the optical properties are measured at the center point of the LCD screen.

Note1 Definition of Response Time (White-Black)

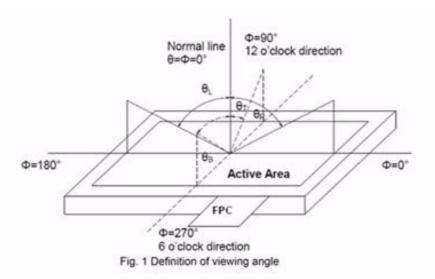
Note2 Definition of Contrast Ratio

Contrast ratio is calculated with the following formula:

Contrast Ratio(CR)=(White)Luminance of ON ÷ (Black)Luminance of OFF

Note3 Definition of Luminance

Measure the luminance of white state at center point.


Note4 Definition of Luminance Uniformity

Measured Maximum luminance [L(MAX)] and Minimum luminance[L(MIN)] on the 9 points

Luminance Uniformity is calculated with the following formula:

 $\Delta L = [L(MIN) / L(MAX)] X 100\%$

Note5 Definition of Viewing Angle

Appendix B

Handling Precautions

B.1 Handling Precautions

The optical characteristics are measured under stable conditions at 25°C (Room Temperature)

- 1. Since front polarizer is easily damaged, pay attention not to scratch it.
- 2. Be sure to turn off power supply when inserting or disconnecting from input connector.
- 3. Wipe off water drop immediately. Long contact with water may cause discoloration or spots.
- 4. When the panel surface is soiled, wipe it with absorbent cotton or other soft cloth.
- 5. Since the panel is made of glass, it may break or crack if dropped or bumped on hard surface.
- 6. Since CMOS LSI is used in this module, take care of static electricity and insure human earth when handling.
- 7. Do not open or modify the Module Assembly.
- 8. Do not press the reflector sheet at the back of the module to any directions.
- 9. In case if a Module has to be put back into the packing container slot after once it was taken out from the container, please press at the far ends of the LED light bar reflector edge softly. Otherwise the TFT Module may be damaged.
- 10. At the insertion or removal of the Signal Interface Connector, be sure not to rotate nor tilt the Interface Connector of the TFT Module.
- 11. After installation of the TFT Module into an enclosure, do not twist nor bend the TFT Module even momentary. At designing the enclosure, it should be taken into consideration that no bending/twisting forces are applied to the TFT Module from outside. Otherwise the TFT Module may be damaged.
- Small amount of materials having no flammability grade is used in the LCD module. The LCD module should be supplied by power complied with requirements of Limited Power Source (IEC60950 or UL1950), or be applied exemption.

www.advantech.com

Please verify specifications before quoting. This guide is intended for reference purposes only.

All product specifications are subject to change without notice.

No part of this publication may be reproduced in any form or by any means, electronic, photocopying, recording or otherwise, without prior written permission of the publisher.

All brand and product names are trademarks or registered trademarks of their respective companies.

© Advantech Co., Ltd. 2012