PCM-3641

4-port RS-232 High-Speed Module

Introduction

The PCM-3641 is a PC/104-compatible 4-port High-Speed RS-232 serial interface module. It works with PC/104 CPU modules or CPU cards which accept PC/104 expansion modules. It provides four independent serial interfaces, accessed through male DB-9 connectors.

The module's industry-standard 16C550 asynchronous communication chip is fully programmable. The module requires no special commands or control codes if you use the standard COM1 ~ COM4 port addresses.

Features

- Four independent RS-232 serial ports
- Transmission speeds up to 460 Kbps
- Independent/Shared IRQ settings for each of 4 serial ports
- Wide IRQ selection: 3, 4, 5, 6, 7, 9, 10, 11, 12, 15
- Supports Standard DOS COM1, COM2, COM3, and COM4
- Supports DOS/Windows 3.1 (PC-ComLib), Windows 95/ 98/NT
- . LED indicators: TX. RX
- Compatible with standard PC ports: COM1, COM2, COM3, COM4
- On-board interrupt status register for greater throughput
- Complete RS-232 Modem-control signals

Specification:

· Bus interface: ISA

Number of ports: 4

• I/O address: 0x0200 ~ 0x03F8

• IRQ: 3, 4, 5, 6, 7, 9, 10, 11, 12, 15

• Data bits: 5, 6, 7, 8

Stop bits: 1, 1.5, 2

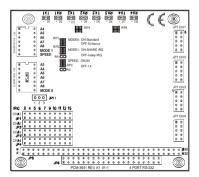
· Parity: none, even, odd

• Speed (bps): 50 ~ 460 K

· Connectors: Four DB-9 male

 Data signals: TxD, RxD, RTS, CTS, DTR, DSR, DCD, RI, GND

Power requirement: +5V@200 mA (Typical);
 +5V@ 250 mA (Max.)


- Clock input: 14.7456 MHz
- Operating Temperature.: 0 ~ 65° C (refer to IEC-68-1-1, 2)
- Storage Temperature: -25 ~ 80° C

Initial inspection

We carefully inspected the PCM-3641 both mechanically and electrically before we shipped it. It should be free of marks and scratches and in perfect electrical order on receipt.

Handle the board only by its edges. The static charge on your body may damage its integrated circuits. Keep the card in its anti-static package whenever it is not installed. You can use this package to return the card if it should need repair.

Board Layout

Card Configuration

Each port on the PCM-3641 card has jumpers and 2 DIP switches which require configuring prior to use. The DIP switches set the port to the appropriate I/O address and different modes. The jumpers set the port's IRQ.

Default Settings

The board is shipped with default settings. If you need to change these settings, however, see the following sections. Otherwise, you can simply install the card.

PCM-3641 Default Configuration			
Setting	Default Function		
JP1	IRQ 5		
Speed Mode	1 x		
IRQ mode	Share		
Base Address	Address 300H		
Vector Address	Interrupt 280H		
Standard/ Enhanced	Enhance		
Operating System	Windows 95/98/NT		

Jumper and switch settings

The PCM-3641 can function in many different modes according to your application needs. These modes include Standard/Enhance Mode, Independent/Shared IRQ Mode, Speed Mode and Operating System Mode. Details of these specific modes are described as follows:

Standard/Enhanced Mode (MODE0)

The PCM-3641 can be used in standard or enhanced mode. In standard mode the I/O addresses are compatible with the standard PC communication ports, COM1~COM4. In enhanced mode you can select a different base address. The offset of each port from the base address is fixed. You can use MODE0 of DIP switch SW1 to select standard or enhanced mode.

Standard mode

In standard mode, the I/O address of the ports are as follows:

Port	I/O ad	dress Interrupt No.
Port 1	3F8	Selectable
Port 2	2F8	Selectable
Port 3	3E8	Selectable
Port 4	2E8	Selectable

Enhanced mode

In enhanced mode, you can select a different base address. The base address determines the address for each of the four ports.

The I/O addresses for the four ports are as follows:

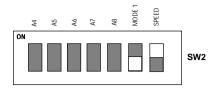
Port	I/O address	
Port 1	Base + 00H	
Port 2	Base + 08H	
Port 3	Base + 10H	
Port 4	Base + 18H	

You use switches 1~6 of DIP switch SW1, a 7-position DIP switch, to set the base address. You can set the base address anywhere from hex 200 to 3F8.

To set the base address, you have to calculate the base address as follows:

Note: On the PCM-3641 the address line A9 does not appear on the DIP switch as it is permanently hardwired to HEX 200 on the card.

The following table shows different base address settings.


Base Address	A3	A4	A 5	A6	Α7	A8
200 - 207	•	•	•	•	•	•
208 - 20F	0	•	•	•	•	•
*300 - 307	•	•	•	•	•	0
3E8 - 3EF	0	•	0	0	0	0
3F8 - 3FF	0	0	0	0	0	0

Note: If your CPU module or card has serial interface ports, you will need to adjust the I/O port addresses (or disable the ports) to avoid conflicts.

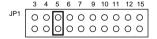
Independent/Shared IRQ mode (MODE1, JP1, JP2, JP3, JP4)

The card's IRQ can be set up using MODE1 of SW2. Please note that the DIP switch is for setting the mode as shown below.

Shared IRQ Mode

Independent IRQ Mode

Independent IRQ Mode (JP1-JP4)


In this mode, each of the four ports can have IRQ channels set individually. For each port, select an IRQ which is not already in use by another card in the system. The map of jumpers and ports is shown below.

Port 1 \longrightarrow JP1 Port 2 \longrightarrow JP2 Port 3 \longrightarrow JP3

Port 4 -> JP4

Shared IRQ Mode (JP1)

Select an IRQ which is not already in use by another card in the system. If you are installing more than one PCM-3641, set them to different IRQ numbers. Jumper Bank JP1 controls the card IRQ. Simply place the jumper on the required interrupt level as shown in the following figure.

Interrupt Status Register Setup (SW2, Vector address)

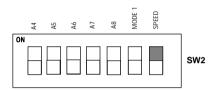
This feature on the PCM-3641 is utilized in the shared IRQ mode. When data arrives at one of the four ports, it will generate an interrupt in the interrupt register. The PC software can read this, and identify immediately which port generated the interrupt. This saves time, and makes programming easier. When a data bit of the interrupt status register is set to 0, the corresponding channel is selected to generate an interrupt. If the bit is 1, then no interrupt is generated. DIP switch SW2 controls the card's interrupt status register, as shown in the following figure and table.

Interrupt	Status Register S	W2
Bit	Function	
0	Port 1	
1	Port 2	
2	Port 3	
3	Port 4	
4	Not Used	
5	Not Used	
6	Not Used	
7	Not Used	


The user may change the interrupt status address via SW2. Please note that the address decoder will occupy a continuous, 16-byte area related to the switch setting. For example, if you set the switch to 210H, then the address 210H to 21FH will all be decoded. The various DIP switch settings (SW2) for the interrupt status register are as shown in the table opposite.

A4	A5	A6	A7	A8	Interrupt Register
ON	ON	ON	ON	ON	200H
OFF	ON	ON	ON	ON	210H
ON	OFF	ON	ON	ON	220H
OFF	OFF	ON	ON	ON	230H
ON	ON	OFF	ON	ON	240H
OFF	ON	OFF	ON	ON	250H
ON	OFF	OFF	ON	ON	260H
OFF	OFF	OFF	ON	ON	270H
ON	ON	ON	OFF	ON	280H
OFF	ON	ON	OFF	ON	290H
ON	OFF	ON	OFF	ON	2A0H
OFF	OFF	ON	OFF	ON	2B0H
ON	ON	OFF	OFF	ON	2C0H
OFF	ON	OFF	OFF	ON	2D0H
ON	OFF	OFF	OFF	ON	2E0H
OFF	OFF	OFF	OFF	ON	2F0H
ON	ON	ON	ON	OFF	300H
OFF	ON	ON	ON	OFF	310H
ON	OFF	ON	ON	OFF	320H
OFF	OFF	ON	ON	OFF	330H
ON	ON	OFF	ON	OFF	340H
OFF	ON	OFF	ON	OFF	350H
ON	OFF	OFF	ON	OFF	360H
OFF	OFF	OFF	ON	OFF	370H
ON	ON	ON	OFF	OFF	380H
OFF	ON	ON	OFF	OFF	390H
ON	OFF	ON	OFF	OFF	3A0H
OFF	OFF	ON	OFF	OFF	3B0H
ON	ON	OFF	OFF	OFF	3C0H
OFF	ON	OFF	OFF	OFF	3D0H
ON	OFF	OFF	OFF	OFF	3E0H
OFF	OFF	OFF	OFF	OFF	3F0H

Speed Mode Selection


The PCM-3641 employs a unique speed option that allows the user to choose either normal speed mode (1x) or high speed mode (8x). This high speed mode is selected at SPEED of SW2.

Normal Speed Mode

To select the baud rate commonly associated with COM ports, such as 2400, 4800, 9600...115.2 Kbps, place the switch as follows.

High Speed Mode

To increase normal mode rates up to eight times, (e.g. if 115.2 Kbps is selected, the rate can be increased up to 921.6 Kbps), place the switches as follows.

Operating Environment Selection

Set jumper 11 (JP11) to correspond with your desired software operating environment. Connect the left two pins of JP11 to operate in DOS or Windows 3.1 mode, as shown below. Connect the right two pins to operate in Windows 95/98/NT mode.

DOS and Windows3.1

Windows 95/98/NT

Driver Installation for DOS Users

Make a duplicate copy of the driver diskette in case the original disk becomes lost or damaged. Copy the files to a subdirectory on your hard disk if you wish.

Card setup

The PCM-3641's driver determines the configuration of the installed cards by reading a data file, GEN-DRV.CNF. When you first install the PCM-3641, and each time you change the card's address and IRQ, you will need to run the card setup program to save the settings to the configuration file. Program files should be installed to the hard disk. Insert the driver disk in your computer, type DOSINST from the A: (or B:) prompt and press enter. Once the files have been

installed, type SETUP from the \COMLIB\BIN prompt and press ENTER. You will then see the screen on the following page.

After the screen shows up, move the cursor bar (using the arrow keys or the mouse) to the general serial board field and press ENTER. The screen shown below will appear.

When you are finished setting up the ports, press the ESC key to return to the previous windows. Press F10 to save the new configuration or ESC to quit without saving. The setup program will then create a new configuration data file GEN-DRV.CNF.

communications under Windows 3.x. It is a simple example program capable of sending and receiving data after each port is opened with selected communication parameters. As Windows 3.x features multitasking, multiple windows for the ports can appear simultaneously under TTY. However, Terminal, the application provided by Windows is limited for the use of COM1 to COM4.

After completing the installation, restart Windows. An additional line, "comm.drv=sercomm.drv", will appear for the PCM-3641 in the [boot] section of the Windows SYSTEM.INI file. In addition, a Windows group "PC-ComLIB Standard COMM Driver" will be generated for reconfiguration, driver removal, etc. At this point, you are ready to execute applications that support Windows COMM API calls

ICOM Utility Setup for Windows 95/98/ NT Environments

This section discusses the ICOM utility software package installation, configuration and upgrade/ removal procedure for the Windows 95/98 and NT environments.

Utility Installation

Follow the installation procedure below to install the PCM-3641 under Windows 95/98/NT:

- 1.Run Setup.exe on the driver diskette.
- Select "Advantech Icom Utility" to install and configure the board, following the on-line instructions.
- After the Advantech Icom Utility configuration panel pops up, please refer to the software help file for more details.
- 4. Following completion of the installation, restart Windows

Following completion of installation, please restart your system as prompted.

Once the board and driver have been installed and the system restarts successfully, users can execute any ready-made applications, such as HyperTerminal to transmit/receive data, or Remote Access Service to provide dial-up networking capability.

Configuration:

Enter the configuration program to install the device driver, or click the Taskbar [Start] button, then select the [Programs] menu, then the [Advantech Icom Utility] menu and then [Icom].

When the configuration panel pops up,

click the [Add Board] button to add a board.

Click the [Delete] button to remove a board.

Board Type: PCM-3641

Base COM: Specifies the COM number of the first port. Subsequent ports are mapped to subsequent COM numbers. For instance, if the first port is mapped to COM10, then the second port is mapped to COM11 sequentially.

Base Address (200H~3F8H): Specifies the base address of the first port. Subsequent base addresses are mapped to subsequent COM numbers. For instance, if the first port is mapped to 300H, then the second port is mapped to 308H sequentially.

PCM-3641 series cards can be installed together in a single system as long as the system memory resources are sufficient and available in a system. Different boards should be assigned different IRQs.

Click the [Share IRQ Enable] button to set the share IRQ function.

Share IRQ: 3, 4, 5, 6, 7, 9, 10, 11, 12, 15

Vector Address: 200H ~ 3F0H

After you finish the installation, you can click [Exit] and restart your system. Unless the system is restarted, the latest configuration will not take effect.

• Operating System Mode

Connect the left two pins of JP11 to use DOS, Windows 3.1

Connect the right two pins of JP11 to use Windows 95/98/NT

Jumper Setting

STANDARD/ ENHANCED Mode

MODE 0 of **SW1** is used to set the Standard/enhanced mode of this card.

MODE 0: ON (Upper) position -> STANDARD mode

MODE 0: OFF (Lower) position -> ENHANCED mode

STANDARD Mode:

In this mode, The I/O Addresses and its IRQ Level for each port are set to default as shown below, (Disable BIOS setting of on-board COM1 ~ COM4).

Port No.	I/O Address	COM Port	IRQ Le	vel (*)
POIL NO.	I/O Address	No.	Independent IRQ	Shared IRQ
Port 1	3F8h	COM1	JP1	JP1
Port 2	2F8h	COM2	JP2	JP1
Port 3	3E8h	СОМЗ	JP3	JP1
Port 4	2E8h	COM4	JP4	JP1

ENHANCED Mode:

In this mode, The I/O Addresses and its IRQ Level for each port are set to default as shown below, (Make sure that the I/O address on BIOS setting of on-board COM1 ~ COM4 will never conflict with [Base Address] ~ [Base Address + 20h])

Port No.	I/O Address	COM Port	IRQ Le	vel (*)
POR NO.	I/O Address	No.	Independent IRQ	Shared IRQ
Port 1	Base Address + 00h	COM1	JP1	JP1
Port 2	Base Address + 08h	COM2	JP2	JP1
Port 3	Base Address + 10h	СОМЗ	JP3	JP1
Port 4	Base Address + 18h	COM4	JP4	JP1

• IRQ Mode

DIP 6 (MODE 1) of SW2 is used to set the IRQ mode of this card

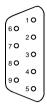
MODE 1: ON (Upper) position →Shared IRQ mode

MODE 1: OFF (Lower) position → Independent IRQ mode

SPEED Mode

6

SPEED of **SW2** is used to decide the speed mode of this card.


SPEED: **ON** (Upper) position → High Speed Mode

SPEED: OFF (Lower) position → Normal Speed Mode

Signal Wiring

Connector pin assignments

You access the PCM-3641's ports through four external male DB-9 connectors. RS-232 connector pin assignments are as follows:

Pin des	Pin description					
1 DCD	receive line signal detector					
2 RD	received data					
3 TD	transmitted data					
4 DTR	data terminal ready					
5 GND	ground					
6 DSR	data set ready					
7 RTS	request to send					
8 CTS	clear to send					
9 RI	ring indicator					

RS-232 Signal wiring

Since the RS-232 interface is not strictly defined, many devices have their own connection methods, which may ignore some signal lines or define reserved lines to other functions. It is best to refer to the user's manual for your device for installation instructions. You may find the following helpful.

In general, DTE (Data Terminal Equipment) refers to the device that is leading the communication. Examples include PC's, terminals and some printers. DCE refers to the device being communicated with or controlled. Examples include modems, DSU's (digital service units), printers and lab/factory equipment.

In some situations you may be able to get by with just three lines: data on TxD, a Signal Ground and a handshaking line. Examples are printer or plotter connections, troubleshooting and situations where you require only one-wire communication.

Terminal or PC (DTE) connections

PCM-36	641 (DTE): (DB-9)	Terminal (D	ΓΕ) : DB-25
Pin	Signal	Pin	Signal
3	TxD	3	RxD
2	RxD	2	TxD
7	RTS	5	CTS
8	CTS	4	RTS
6	DSR	20	DTR
5	GND	7	GND
4	DTR	6	DSR
1	DCD	8	DCD

Modem connections

PCM-3641 (DTE): DB-9 male		Modem (DCE)		
Pin	Signal	Pin	Signal	
3	TxD	2	RxD	
2	RxD	3	TxD	
7	RTS	4	CTS	
8	CTS	5	RTS	

6	DSR	6	DTR
5	GND	7	GND
4	DTR	20	DSR
1	DCD	8	DCD

For DTE to DCE connection, use straight through cable connections, i.e. you don't have to reverse lines 2 and 3, lines 4 and 5, and lines 6 and 20. Because in general DCE RS-232 interfaces are reversed themselves.

Terminal without handshake

PCM-364	1 (DTE): DB-9 male	Terminal (DTE)		
Pin	Signal	Pin	Signal	
3	TxD	3	RxD	
2	RxD	2	TxD	
7	RTS			
8	CTS			
6	DSR			
5	GND	7	GND	
4	DTR			
1	DCD			

This completes the hardware installation.

Programming

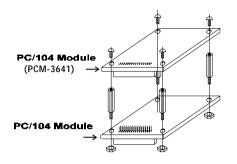
The maximum length of a RS-232 cable is 100 ft. If you need to connect over longer distances, (longer than 100 ft), you will have to use another standard (like RS-422 or RS-485).

If you do not use CTS, RTS, DSR, DTR signals, please loop them back, otherwise the PC-ComLIB software will not function correctly. PC-ComLIB always checks for handshake signals.

Hardware Installation

TURN OFF your PC power supply whenever you install or remove the PCM-3641 or connect and disconnect cables.

Installing the module on a CPU card


- 1. Turn the PC's power off. Turn the power off to any peripheral devices such as printers and monitors.
- 2. Disconnect the power cord and any other cables from the back of the computer.
- Remove the system unit cover (see the user's guide for your chassis if necessary).
- 4.Remove the CPU card from the chassis (if necessary) to gain access to the card's PC/104 connector.
- 5. Screw the brass spacer (included with the module) into the threaded hole on the CPU card. Do not tighten too much, or the threads may be damaged.
- 6. Carefully align the pins of the PCM-3641 with the PC/104 connector. Slide the module into the connector. The module pins may not slide all the way into the connector; do not push too hard or the module may be damaged.
- Secure the module to the CPU card to the threaded hole in the CPU card using the included screw.

- 8. Attach any accessories to the PCM-3641.
- 9. Reinstall the CPU card and replace the system unit cover. Reconnect the cables you removed in step 2.

Turn the power on.

Connecting to another PC/104 module.

1.Insert the pins of connector JP6 (on the end of the PCM-3641 module) into the piggyback connector on the other PC/104 module.

2. Screw the PCM-3641 to the brass spacer. This completes the hardware installation.

Programming with COM1 or COM2

If you set the PCM-3641's ports as COM1 and COM2, you can send and receive data using the normal communication functions found in high-level languages. The following examples use BASIC to demonstrate PCM-3641 programming.

The BASIC communication process starts with the OPEN "COMn: , , ..." statement. This statement assigns a buffer for communication purposes and sets up the communication parameters.

Command format

OPEN "COMn: [speed][,parity][,data][,stop] [,RS][,CS[n]][,DS[n]][,CD[n]][,LF][,PE]" AS [#]filenum

Example:

OPEN "COM1:9600,N,8,,CS,DS,CD" AS #1

Where:

COMn: n is 1 or 2, indicating either COM1 or COM2

speed: An integer constant specifying the baud rate in bits per second

parity: One of the following characters:

S: space O. odd M· mark

E: even N: none

An integer constant indicating the number of data data: bits. Valid values are 4, 5, 6, 7 and 8. The default is 7

The number of stop bits. Valid values are 1 and 2. stop: The default is 2 for 75 and 110 bps, 1 for all others.

RS: Suppresses RTS

CS: Controls CTS DS: Controls DSR

CD:

LF: Sends a line feed following each carriage return

Controls CD

PE: Enables parity checking

> filenum: filenum is an integer expression which evaluates to a valid file number

You must put the speed, parity, data and stop parameters in this position and order, but you can put the RS, CS, DS, CD, LF and PE parameters in any order. The n argument in the CS, DS and CD parameters specifies the number of milliseconds to wait for the signal before returning a "device timeout" error. n may range from 0 to 65535. If you omit n or set it equal to 0, then the line status is not checked at all.

Refer to the IBM BASIC reference manual for more detailed information.

Programming example - standard COM ports

You can use the following BASIC program to test the PCM-3641's send and receive functions.

10 ************* 20 \Program: DEMO01.BAS 30 \Description: This demo program transmits a 40 \string through COM1 and receives it through

50 \COM2 70

160 \Set the proper parameters \COM1 & COM2: baud rate=9600 ; no parity check; 170

180 \Data bit=8; stop bit=1 190 \Ignore the CTS, RTS and DSR signals.

OPEN "COM1:9600.N.8.1.RS.CS.DS.CD" FOR RANDOM AS #1 200 OPEN "COM2:9600,N,8,1,RS,CS,DS,CD" FOR RANDOM AS #1 210

INPUT "INPUT COMMAND: "; CMD\$ 220

230 IF CMD\$="O" OR "q" THEN CLOSE:END ELSE GOSUB 250 240

GOSUB 300:GOTO 220

250 ***** Transmit data sub-routine *****

260 PRINT #1,CMD\$

270 RETURN

***** Receive data sub-routine ***** 300

T=TIMER:TEMPS="":RXS="" 310

320 IF TIMER>T+.5 THEN PRINT "TIMEOUT ERROR":RETURN

330 IF LOC(2)>0 THEN TEMP\$=INPUT\$(1,#2) ELSE GOTO 320

340 RX\$=RX\$+TEMP\$

350 IF TEMP\$=CHR\$(13) THEN GOTO 360 ELSE GOTO 320

360 PRINT "RECEIVE DATA: "; RX\$: RETURN 380

'See if the data is available by checking

390 'the Data Ready bit.

400 IF (INP(PORT2%+5) AND 1)=0 GOTO 400

J=INP(PORT2%) 410

420 'Print out the data byte received

430 PRINT "port "; HEX\$(PORT2%)" = "; HEX\$(J)

440 'If the value sent <> the received value then error

450 IF J<>BYTE GOTO 620

NEXT BYTE 460

470 'Loop over data (0-255) and send it

480 'from port2 to port1.

490 FOR BYTE=0 TO 255

500 'See if the transmitter buffer is empty.

510 IF (INP(PORT2%+5) AND 32)=0 GOTO 510

520 OUT PORT2%, BYTE

```
280 GOSTER 310
530 'See if the data is available by
540 'checking the Data Ready bit.
                                                     290 NEXT T
550 IF (INP(PORT1%+5) AND 1)=0 GOTO 550
                                                     300 END
560 J=INP(PORT1%)
                                                     310 STATUS = INP(PORT + 5) AND &H20
570 PRINT "port "; HEXS(PORT1%)" = "; HEXS(J)
                                                     320 IF STATUS = 0 THEN 310
    TF J<>BYTE GOTO 620
580
                                                     330 OUT PORT, d
590 NEXT BYTE
                                                     340 FOR J = 0 TO 1200: NEXT J
    'If everything is OK, then stop.
                                                     350 PETTION
610 END
620
    PRINT "Data transmission error!":BEEP:END
```

Programming example-communication

The following pair of example programs show how you can set up communication between two computers. The first program sends data then receives data. The second program receives data then sends data. Run the first program on one computer and the second on another.

```
\*****************************
2.0
    \Clear screen
3.0
    CLS
4 N
    \Define variables A to Z as integer
    DEFINT A-Z
    \Set port base address (must match hardware)
60
70
     PORT = &H3F8
     \Set baud rate to 300
    OUT PORT + 3, &H80
90
100 OUT PORT, &H80
110 OUT PORT, 1
    OUT PORT + 3, &H1F
\******* STEP 2: SEND DATA *******
120
130
150
    FOR I = 65 TO 90
160
170 GOSUB 200
180 NEXT I
190 GOTO 260
200 STATUS = INP(PORT + 5) AND &H20
210 IF STATUS = 0 THEN 200
220 OUT PORT, I
230 FOR J = 0 TO 1200: NEXT J
240 RETURN
    \***** STEP 3: RECEIVE DATA ****
250
260 FOR I = 65 TO 90: GOSUB 280: NEXT I
270 END
    STATUS = INP(PORT + 5)
280
290 IF (STATUS AND &HlE) THEN 280
300 IF (STATUS AND &H1) = 0 THEN 280
310 D = INP(PORT)
320 PRINT "DATA= "; CHR$(D)
330 RETURN
```

Program for second computer

```
\************************
10
     \Clear screen
2.0
3.0
40
    \Define variables A TO Z as integer
     DEFINT A-Z
50
     \Set port base address (must match hardware)
70
    PORT = \&H2F8
an
     \Set baud rate to 300
    OUT PORT + 3, &H80
100 OUT PORT, &H80
110 OUT PORT, 1
120 OUT PORT + 3, &H1F
    \***STEP 2: RECEIVE DATA FROM ANOTHER PC *****
130
140 FOR I = 65 TO 90: GOSUB 190: NEXT I
150 PRINT: PRINT: PRINT
160
    PRINT"DATA RECEIVES END, THEN DATA SEND BEGINNING."
170
    PRINT: PRINT "PRESS ANY KEY..."
180 IF INKEYS = "" THEN 180 ELSE 260
190 STATUS = INP(PORT + 5)
200
    IF STATUS AND &H1E THEN GOTO 190
210 IF (STATUS AND &H1) = 0 THEN 190
220 d = INP(PORT)
230 PRINT "DATA= "; CHR$(d)
    \******* STEP 3: SEND DATA *********
250
260 FOR I = 65 TO 90
270 d = T
```

C language test program

/* Program: DEMO01.C

#include <dos.h>

#include <stdio.h>

#include <comio.h>

#define TIME OUT 10000

#include <io.h>

/* Compiler: Turbo C 2.0 */

You can use the following C program to test the PCM-3641's send and receive functions.

/***************

/* Description: This demo program transmits a string */
/* to COM1 and receives a string from COM2 */

```
static int base0 = 0x3f8; /* Base address of port 0 */
static int base1 = 0x2f8; /* Base address of port 1 */
static char rec[16]; /* Buffer for received string */
static char cmd[16]; /* Buffer for transmitted string /
void main()
   int i; /* Counter for character being sent/received */
  char flag; /* Flag for end of output/input data */
  int timeout; /* Timeout counter */
  outport((base0+2), 0xc9); /* enable port 0 FIFO */
  outport((base1+2), 0xc9); /* enable port 1 FIFO */
   /* Set communication parameters for port 0 */
  outp(base0+3, 0x80); /* Set DLAB=1 */
  /* Set baud = 115200 */
  outp(base0, 0x01);
  outp(base1+1, 0);
  /* Set data=8, stop=1, no parity */
  outp(base0+3, 0x03);
  /* Disable port 0 interrupt */
  outp(base0+1, 0x00);
  /* Set communication parameters for port 1 */
  outp(base1+3, 0x80); /* Set DLAB=1 */
  /* Set baud = 115200 */
  outp(base1, 0x01);
  outp(base1+1, 0);
/* Set data=8, stop=1, no parity */
  outp(base1+3, 0x03);
/* Disable port 1 interrupt */
outp(base1+1, 0x00);
printf("\nEnter a string to be transmitted "
       "(15 characters or less) or Q to quit:");
gets(cmd);
while (cmd[0] != 'q' && cmd[0] != 'O')
   i = 0;
  cmd[strlen(cmd)] = 0x0d;
  flag=1;
  while (flag)
           outportb(base0, cmd[i]); /* Send data */
           if (cmd[i] == 0x0d)
               flag=0;
           i++:
  flag=1;
  timeout=TIME_OUT;
  while (flag)
```

```
/* Check if receiver data is ready */
        if ((inportb(base1+5) & 1) !=0)
        rec[i]=inportb(basel); /* Receive data */
        if (rec[i] == 0x0d)
          rec[i+1]='\0';
          flag=0;
          printf("\nReceived data: %s\n", rec);
else
{
 /* Check timeout */
        timeout-;
        if (timeout == 0)
          flag = 0;
          printf("\nTimeout error\n");
printf("\nEnter a string to be transmitted "
     "(15 characters or less) or Q to quit:");
gets(cmd);
```

Register Structure and Format

This section gives short description of each of the module's registers. For more information please refer to the data book for the TEXAS INSTRUMENTS 16C554 UART chip.

All registers are one byte. Bit 0 is the least significant bit, and bit 7 is the most significant bit. The address of each register is specified as an offset from the port base address (BASE), selected with DIP switch SW1.

DLAB is the "Divisor Latch Access Bit", bit 7 of BASE+3.

BASE+0	Receiver buffer register when DLAB=0
	and the operation is a read.

BASE+0 Transmitter holding register when DLAB=0 and the operation is a write.

BASE+0 Divisor latch bits 0 - 7 when DLAB=1.

divisor as follows:

Divisor latch bits 8 - 15 when DLAB=1.

The two bytes BASE+0 and BASE+1 together form a 16-bit number, the divisor, which determines the baud rate. Set the

Baud rate	Divisor	
50	2304	
75	1536	
110	1047	
133.5	857	
150	768	
300	384	
600	192	
1200	96	
1800	64	
2000	58	
2400	48	
3600	32	
4800	24	
7200	16	
9600	12	
19200	6	

38400	3	
56000	2	
115200	1	

BASE+1

Interrupt Enable Register (IER) when DLAB=0

- bit 0 Enable received-data-available interrupt
- bit 1 Enable transmitter-holdingregister-empty interrupt
- bit 2 Enable receiver-line-status interrupt
- bit 3 Enable modem-status interrupt

BASE+2

Interrupt Status Register (ISR)

bit 0 Logic 0= An interrupt is pending and the ISR contents may be used as a pointer to the appropriate interrupt service routine.

Logic 1= no interrupt pending.

bit 1-3 These bits indicate the source for a pending interrupt at interrupt priority levels 1, 2, and 3 (see interrupt source table).

bit 6-7 These bits are set to a logic 0 when the FIFO is not being used. They are set to a logic 1 when the FIFOs are enabled.

Interrupt Source Table Priority Level Bit-3 Bit-2 Bit-1 Bit-0 FIFO trigger level

1	0	1	1	0	LSR
2	0	1	0	0	RXRDY
2	1	1	0	0	RXRDY
3	0	0	1	0	TXRDY
4	0	0	0	0	MSR

BASE+2 FIFO Control Register (FCR)

bit 0	Enable transmit and receive FIFOs
bit 1	Clear contents of receive FIFO
bit 2	Clear contents of transmit FIFO
bit 3	Change RXRDY and TXRDY from mode 0 to mode 1.

bits 6-7 Set trigger level for receiver FIFO interrupt.

Bit 7	Bit 6	FIFO trigger level
0	0	01
0	1	04
1	0	08
1	1	14

BASE+3 Line Control Register (LCR)

bit 0 Word length select bit 0

BASE+1

	Dit 1	Word forigat delega bit 1
Bit 1	Bit 0	Word length (bits)
0	0	5
0	1	6
1	<u>0</u> 1	7 8
	<u>'</u>	0
	bit 2	Number of stop bits
	bit 3	Parity enable
	bit 4	Even parity select
	bit 5	Stick parity
	bit 6	Set break
	bit 7	Divisor Latch Access Bit (DLAB)
BASE+4	Modem	Control Register (MCR)
	bit 0	DTR
	bit 1	RTS
BASE+5	Line Stat	us Register (LSR)
	bit 0	Receiver data ready
	bit 1	Overrun error
	bit 2	Parity error
	bit 3	Framing error
	bit 4	Break interrupt
	bit 5	Transmitter holding register empty
	bit 6	Transmitter shift register empty
	bit 7	At least one parity error, framing rro or break indication in the FIFO
BASE+6	Modem S	Status Register (MSR)
	bit 0	Delta CTS
	bit 1	Delta DSR
	bit 2	Trailing edge ring indicator
	bit 3	Delta received line signal detect
	bit 4	CTS
	bit 5	DSR
	bit 6	RI
	bit 7	Received line signal detect
BASE+7	Tempora	ry data register
D040:		

bit 1

Word length select bit 1

	3	SD6	+5 V	LA22	IRQ10
	4	SD5	IRQ9	LA21	IRQ11
	5	SD4	-5V	LA20	IRQ12
	6	SD3	DRQ2	LA19	IRQ15
	7	SD2	-12V	LA18	IRQ14
	8	SD1	ENDXFR*	LA17*	DACK0*
	9	SD0	+12v	MEMR*	DRQ0*
	10	IOCHRDY	(KEY)2	MEMW*	DACK5*
	11	AEN	SMEMW*	SD8	DRQ5
	12	SA19	SMEMR*	SD9	DACK6*
	13	SA18	IOW*	SD10	DRQ6
	14	SA17	IOR*	SD11	DACK7*
	15	SA16	DACK3*	SD12	DRQ7
	16	SA15	DRQ3	SD13	+5 V
	17	SA14	DACK1*	SD14	MASTER*
	18	SA13	DRQ1	SD15	OV
	19	SA12	REFRESH*	(KEY)2	0V
	20	SA11	SYSCLK	-	-
	21	SA10	IRQ7	-	-
	22	SA9	IRQ6	-	-
	23	SA8	IRQ5	-	-
	24	SA7	IRQ4	-	-
	25	SA6	IRQ3	-	-
	26	SA5	DACK2*	-	-
	27	SA4	TC	-	-
	28	SA3	BALE	-	-
	29	SA2	+5 V	-	-
	30	SA1	OSC	-	-
	31	SA0	OV	-	-
Ì	32	OV	OV	-	-

Standard PC I/O Port Assignment

The following chart shows the I/O addresses used by standard PC peripheral devices.

I/O address	(hex) Assignment
000-1FF	used by base system board
200	not used
201	game control
202-277	not used
278-27F	second printer port
280-2F7	not used
2F8-2FF	COM2
300-377	not used
378-37F	printer port
380-3AF	not used
3B0-3BF	Monochrome adapter and printer
3C0-3CF	not used
3D0-3DF	colors and graphics adapter
3E0-3EF	not used
3F0-3F7	floppy diskette drive
3F8-3FF	COM1

PC104 Bus Signal Assignment

Pin	J1/P1	J1/P1	J2/P2	J2/P2
	Row A	Row B	Row C	Row D
0	-	-	0V	OV
1	IOCHCHK*	OV	SBHE*	MEMCS16*
2	SD7	RESETDRV	LA23	I0CS16*