
PCLD-780 PCLD-880

Screw Terminal Board

Industrial Wiring Terminal Board with Adapter

Features

- Pin to pin design
- Low-cost universal screw-terminal boards for industrial applications
- 40 terminal points for two 20-pin flat cable connector ports
- Reserved space for signal-conditioning circuits such as low-pass filter, voltage attenuator and current-to-voltage conversion
- Table-top mounting using nylon standoffs. Screws and washers provided for panel or wall mounting

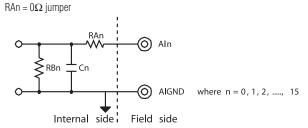
PCLD-780 Only

- Screw-clamp terminal-blocks allow easy and reliable connections
- Dimensions: 102 x 114 mm (4.0" x 4.5")

PCLD-880 Only

- Supports PC-LabCard™ products with DB-37 connectors
- Industrial-grade terminal blocks (barrier-strip) permit heavy-duty and reliable connections
- Dimensions: 221 x 115 mm (8.7" x 4.5")

Introduction


PCLD-780 and PCLD-880 universal screw-terminal boards provide convenient and reliable signal wiring for PC-LabCard™ products with 20-pin flat-cable connectors. PCLD-880 is also equipped with a DB37 connector to support PC-LabCard™ products with DB37 connectors.

PCLD-780 and PCLD-880 let you install passive components on the special PCB layout to construct your own signal-conditioning circuits. You can easily construct a low-pass filter, attenuator or current-to-voltage converter by adding resistors and capacitors onto the board's circuit pads.

Applications

- Field wiring for analog and digital I/O channels of PC-LabCard™ products which employ the standard 20-pin flat cable connectors or DB37 connectors (only PCLD-880)
- Signal conditioning circuits can be implemented as illustrated in the following examples:

a) Straight-through connection (factory setting)

RBn = none Cn = none

b) 1.6 kHz (3dB) low pass filter

$$RAn = 10 \text{ K}\Omega$$

$$RBn = none$$

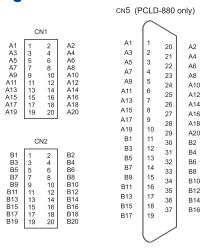
$$Cn = 0.01 \mu\text{F}$$

$$13 \text{dB} = \frac{1}{2\pi RAnCn}$$

c) 10: 1 voltage attenuator:

$$RAn = 9 \text{ K}\Omega$$

$$RBn = 1 \text{ K}\Omega$$


$$Cn = \text{none}$$

$$Attenuation = \frac{RBn}{RAn + RBn}$$
(Assume source impedance << 10 K\Omega)

d) 4 \sim 20 mA to 1 \sim 5 VDC signal converter:

 $RAn = 0 \Omega (short)$ RBn = 250 Ω (0.1% precision resistor) Cn = none

Pin Assignments

Ordering Information

■ PCLD-780	Screw terminal Board, two 1m 20-pin flat cables (PCL-10120-1)
■ PCLD-880	Industrial Wiring Terminal Board, two 1m 20-pin flat cables (PCL-10120-1), and one PCL-10501 adapter (20-pin analog flat connector to DB37 connector)
PCL-10137-1	DB37 cable assembly, 1 m
PCL-10137-2	DB37 cable assembly, 2 m
PCL-10137-3	DB37 cable assembly, 3 m